/*
* Copyright (c) 2009, Wayne Meissner
* All rights reserved.
*
* This file is part of ruby-ffi.
*
* This code is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License version 3 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* version 3 for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with this work. If not, see .
*/
#include "MethodHandle.h"
#include
#include
#ifndef _WIN32
# include
#endif
#include
#include
#include
#include
#include
#if defined(HAVE_NATIVETHREAD) && !defined(_WIN32)
#include
#endif
#include "rbffi.h"
#include "compat.h"
#include "AbstractMemory.h"
#include "Pointer.h"
#include "Struct.h"
#include "Platform.h"
#include "Type.h"
#include "LastError.h"
#include "Call.h"
#include "ClosurePool.h"
#include "Function.h"
#include "MappedType.h"
typedef struct Function_ {
AbstractMemory memory;
FunctionType* info;
MethodHandle* methodHandle;
bool autorelease;
Closure* closure;
VALUE rbProc;
VALUE rbFunctionInfo;
} Function;
static void function_mark(Function *);
static void function_free(Function *);
static VALUE function_init(VALUE self, VALUE rbFunctionInfo, VALUE rbProc);
static void callback_invoke(ffi_cif* cif, void* retval, void** parameters, void* user_data);
static bool callback_prep(void* ctx, void* code, Closure* closure, char* errmsg, size_t errmsgsize);
static void* callback_with_gvl(void* data);
#if defined(HAVE_NATIVETHREAD) && defined(HAVE_RB_THREAD_BLOCKING_REGION)
# define DEFER_ASYNC_CALLBACK 1
#endif
#if defined(DEFER_ASYNC_CALLBACK)
static VALUE async_cb_event(void);
static VALUE async_cb_call(void *);
#endif
#if defined(HAVE_NATIVETHREAD) && defined (HAVE_RB_THREAD_BLOCKING_REGION)
# define DEFER_ASYNC_CALLBACK
#endif
#ifdef HAVE_RUBY_THREAD_HAS_GVL_P
extern int ruby_thread_has_gvl_p(void);
#endif
#ifdef HAVE_RB_THREAD_CALL_WITH_GVL
extern void *rb_thread_call_with_gvl(void *(*func)(void *), void *data1);
#endif
VALUE rbffi_FunctionClass = Qnil;
#if defined(DEFER_ASYNC_CALLBACK)
static VALUE async_cb_thread = Qnil;
#endif
static ID id_call = 0, id_to_native = 0, id_from_native = 0, id_cbtable = 0, id_cb_ref = 0;
struct gvl_callback {
Closure* closure;
void* retval;
void** parameters;
#if defined(DEFER_ASYNC_CALLBACK)
struct gvl_callback* next;
# ifndef _WIN32
pthread_cond_t async_cond;
pthread_mutex_t async_mutex;
# endif
#endif
};
#if defined(DEFER_ASYNC_CALLBACK)
static struct gvl_callback* async_cb_list = NULL;
# ifndef _WIN32
static pthread_mutex_t async_cb_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t async_cb_cond = PTHREAD_COND_INITIALIZER;
# endif
#endif
static VALUE
function_allocate(VALUE klass)
{
Function *fn;
VALUE obj;
obj = Data_Make_Struct(klass, Function, function_mark, function_free, fn);
fn->memory.flags = MEM_RD;
fn->rbProc = Qnil;
fn->rbFunctionInfo = Qnil;
fn->autorelease = true;
return obj;
}
static void
function_mark(Function *fn)
{
rb_gc_mark(fn->rbProc);
rb_gc_mark(fn->rbFunctionInfo);
}
static void
function_free(Function *fn)
{
if (fn->methodHandle != NULL) {
rbffi_MethodHandle_Free(fn->methodHandle);
}
if (fn->closure != NULL && fn->autorelease) {
rbffi_Closure_Free(fn->closure);
}
xfree(fn);
}
static VALUE
function_initialize(int argc, VALUE* argv, VALUE self)
{
VALUE rbReturnType = Qnil, rbParamTypes = Qnil, rbProc = Qnil, rbOptions = Qnil;
VALUE rbFunctionInfo = Qnil;
VALUE infoArgv[3];
int nargs;
nargs = rb_scan_args(argc, argv, "22", &rbReturnType, &rbParamTypes, &rbProc, &rbOptions);
//
// Callback with block,
// e.g. Function.new(:int, [ :int ]) { |i| blah }
// or Function.new(:int, [ :int ], { :convention => :stdcall }) { |i| blah }
//
if (rb_block_given_p()) {
if (nargs > 3) {
rb_raise(rb_eArgError, "cannot create function with both proc/address and block");
}
rbOptions = rbProc;
rbProc = rb_block_proc();
} else {
// Callback with proc, or Function with address
// e.g. Function.new(:int, [ :int ], Proc.new { |i| })
// Function.new(:int, [ :int ], Proc.new { |i| }, { :convention => :stdcall })
// Function.new(:int, [ :int ], addr)
// Function.new(:int, [ :int ], addr, { :convention => :stdcall })
}
infoArgv[0] = rbReturnType;
infoArgv[1] = rbParamTypes;
infoArgv[2] = rbOptions;
rbFunctionInfo = rb_class_new_instance(rbOptions != Qnil ? 3 : 2, infoArgv, rbffi_FunctionTypeClass);
function_init(self, rbFunctionInfo, rbProc);
return self;
}
VALUE
rbffi_Function_NewInstance(VALUE rbFunctionInfo, VALUE rbProc)
{
return function_init(function_allocate(rbffi_FunctionClass), rbFunctionInfo, rbProc);
}
VALUE
rbffi_Function_ForProc(VALUE rbFunctionInfo, VALUE proc)
{
VALUE callback, cbref, cbTable;
Function* fp;
cbref = RTEST(rb_ivar_defined(proc, id_cb_ref)) ? rb_ivar_get(proc, id_cb_ref) : Qnil;
/* If the first callback reference has the same function function signature, use it */
if (cbref != Qnil && CLASS_OF(cbref) == rbffi_FunctionClass) {
Data_Get_Struct(cbref, Function, fp);
if (fp->rbFunctionInfo == rbFunctionInfo) {
return cbref;
}
}
cbTable = RTEST(rb_ivar_defined(proc, id_cbtable)) ? rb_ivar_get(proc, id_cbtable) : Qnil;
if (cbTable != Qnil && (callback = rb_hash_aref(cbTable, rbFunctionInfo)) != Qnil) {
return callback;
}
/* No existing function for the proc with that signature, create a new one and cache it */
callback = rbffi_Function_NewInstance(rbFunctionInfo, proc);
if (cbref == Qnil) {
/* If there is no other cb already cached for this proc, we can use the ivar slot */
rb_ivar_set(proc, id_cb_ref, callback);
} else {
/* The proc instance has been used as more than one type of callback, store extras in a hash */
cbTable = rb_hash_new();
rb_ivar_set(proc, id_cbtable, cbTable);
rb_hash_aset(cbTable, rbFunctionInfo, callback);
}
return callback;
}
static VALUE
function_init(VALUE self, VALUE rbFunctionInfo, VALUE rbProc)
{
Function* fn = NULL;
Data_Get_Struct(self, Function, fn);
fn->rbFunctionInfo = rbFunctionInfo;
Data_Get_Struct(fn->rbFunctionInfo, FunctionType, fn->info);
if (rb_obj_is_kind_of(rbProc, rbffi_PointerClass)) {
AbstractMemory* memory;
Data_Get_Struct(rbProc, AbstractMemory, memory);
fn->memory = *memory;
} else if (rb_obj_is_kind_of(rbProc, rb_cProc) || rb_respond_to(rbProc, id_call)) {
if (fn->info->closurePool == NULL) {
fn->info->closurePool = rbffi_ClosurePool_New(sizeof(ffi_closure), callback_prep, fn->info);
if (fn->info->closurePool == NULL) {
rb_raise(rb_eNoMemError, "failed to create closure pool");
}
}
#if defined(DEFER_ASYNC_CALLBACK)
if (async_cb_thread == Qnil) {
async_cb_thread = rb_thread_create(async_cb_event, NULL);
}
#endif
fn->closure = rbffi_Closure_Alloc(fn->info->closurePool);
fn->closure->info = fn;
fn->memory.address = fn->closure->code;
fn->memory.size = sizeof(*fn->closure);
fn->autorelease = true;
} else {
rb_raise(rb_eTypeError, "wrong argument type %s, expected pointer or proc",
rb_obj_classname(rbProc));
}
fn->rbProc = rbProc;
return self;
}
static VALUE
function_call(int argc, VALUE* argv, VALUE self)
{
Function* fn;
Data_Get_Struct(self, Function, fn);
return (*fn->info->invoke)(argc, argv, fn->memory.address, fn->info);
}
static VALUE
function_attach(VALUE self, VALUE module, VALUE name)
{
Function* fn;
char var[1024];
Data_Get_Struct(self, Function, fn);
if (fn->info->parameterCount == -1) {
rb_raise(rb_eRuntimeError, "cannot attach variadic functions");
return Qnil;
}
if (!rb_obj_is_kind_of(module, rb_cModule)) {
rb_raise(rb_eRuntimeError, "trying to attach function to non-module");
return Qnil;
}
if (fn->methodHandle == NULL) {
fn->methodHandle = rbffi_MethodHandle_Alloc(fn->info, fn->memory.address);
}
//
// Stash the Function in a module variable so it does not get garbage collected
//
snprintf(var, sizeof(var), "@@%s", StringValueCStr(name));
rb_cv_set(module, var, self);
rb_define_singleton_method(module, StringValueCStr(name),
rbffi_MethodHandle_CodeAddress(fn->methodHandle), -1);
rb_define_method(module, StringValueCStr(name),
rbffi_MethodHandle_CodeAddress(fn->methodHandle), -1);
return self;
}
static VALUE
function_set_autorelease(VALUE self, VALUE autorelease)
{
Function* fn;
Data_Get_Struct(self, Function, fn);
fn->autorelease = RTEST(autorelease);
return self;
}
static VALUE
function_autorelease_p(VALUE self)
{
Function* fn;
Data_Get_Struct(self, Function, fn);
return fn->autorelease ? Qtrue : Qfalse;
}
static VALUE
function_release(VALUE self)
{
Function* fn;
Data_Get_Struct(self, Function, fn);
if (fn->closure == NULL) {
rb_raise(rb_eRuntimeError, "cannot free function which was not allocated");
}
rbffi_Closure_Free(fn->closure);
fn->closure = NULL;
return self;
}
static void
callback_invoke(ffi_cif* cif, void* retval, void** parameters, void* user_data)
{
struct gvl_callback cb;
cb.closure = (Closure *) user_data;
cb.retval = retval;
cb.parameters = parameters;
#ifdef HAVE_RUBY_THREAD_HAS_GVL_P
if (ruby_thread_has_gvl_p()) {
#else
if (1) {
#endif
callback_with_gvl(&cb);
#if defined(HAVE_RUBY_NATIVE_THREAD_P) && defined (HAVE_RB_THREAD_CALL_WITH_GVL)
} else if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(callback_with_gvl, &cb);
#endif
#if defined(DEFER_ASYNC_CALLBACK) && !defined(_WIN32)
} else {
pthread_mutex_init(&cb.async_mutex, NULL);
pthread_cond_init(&cb.async_cond, NULL);
pthread_mutex_lock(&cb.async_mutex);
// Now signal the async callback thread
pthread_mutex_lock(&async_cb_mutex);
cb.next = async_cb_list;
async_cb_list = &cb;
pthread_cond_signal(&async_cb_cond);
pthread_mutex_unlock(&async_cb_mutex);
// Wait for the thread executing the ruby callback to signal it is done
pthread_cond_wait(&cb.async_cond, &cb.async_mutex);
#endif
}
}
#if defined(DEFER_ASYNC_CALLBACK)
struct async_wait {
void* cb;
bool stop;
};
static VALUE async_cb_wait(void *);
static void async_cb_stop(void *);
static VALUE
async_cb_event(void)
{
struct async_wait w = { 0 };
w.stop = false;
while (!w.stop) {
rb_thread_blocking_region(async_cb_wait, &w, async_cb_stop, &w);
if (w.cb != NULL) {
// Start up a new ruby thread to run the ruby callback
rb_thread_create(async_cb_call, w.cb);
}
}
return Qnil;
}
static VALUE
async_cb_wait(void *data)
{
struct async_wait* w = (struct async_wait *) data;
w->cb = NULL;
pthread_mutex_lock(&async_cb_mutex);
while (!w->stop && async_cb_list == NULL) {
pthread_cond_wait(&async_cb_cond, &async_cb_mutex);
}
if (async_cb_list != NULL) {
w->cb = async_cb_list;
async_cb_list = async_cb_list->next;
}
pthread_mutex_unlock(&async_cb_mutex);
return Qnil;
}
static void
async_cb_stop(void *data)
{
struct async_wait* w = (struct async_wait *) data;
pthread_mutex_lock(&async_cb_mutex);
w->stop = true;
pthread_cond_signal(&async_cb_cond);
pthread_mutex_unlock(&async_cb_mutex);
}
static VALUE
async_cb_call(void *data)
{
struct gvl_callback* cb = (struct gvl_callback *) data;
callback_with_gvl(cb);
// Signal the original native thread that the ruby code has completed
pthread_mutex_lock(&cb->async_mutex);
pthread_cond_signal(&cb->async_cond);
pthread_mutex_unlock(&cb->async_mutex);
return Qnil;
}
#endif
static void*
callback_with_gvl(void* data)
{
struct gvl_callback* cb = (struct gvl_callback *) data;
Function* fn = (Function *) cb->closure->info;
FunctionType *cbInfo = fn->info;
Type* returnType = cbInfo->returnType;
void* retval = cb->retval;
void** parameters = cb->parameters;
VALUE* rbParams;
VALUE rbReturnType = cbInfo->rbReturnType;
VALUE rbReturnValue;
int i;
rbParams = ALLOCA_N(VALUE, cbInfo->parameterCount);
for (i = 0; i < cbInfo->parameterCount; ++i) {
VALUE param;
Type* paramType = cbInfo->parameterTypes[i];
VALUE rbParamType = rb_ary_entry(cbInfo->rbParameterTypes, i);
if (unlikely(paramType->nativeType == NATIVE_MAPPED)) {
paramType = ((MappedType *) paramType)->type;
rbParamType = ((MappedType *) paramType)->rbType;
}
switch (paramType->nativeType) {
case NATIVE_INT8:
param = INT2NUM(*(int8_t *) parameters[i]);
break;
case NATIVE_UINT8:
param = UINT2NUM(*(uint8_t *) parameters[i]);
break;
case NATIVE_INT16:
param = INT2NUM(*(int16_t *) parameters[i]);
break;
case NATIVE_UINT16:
param = UINT2NUM(*(uint16_t *) parameters[i]);
break;
case NATIVE_INT32:
param = INT2NUM(*(int32_t *) parameters[i]);
break;
case NATIVE_UINT32:
param = UINT2NUM(*(uint32_t *) parameters[i]);
break;
case NATIVE_INT64:
param = LL2NUM(*(int64_t *) parameters[i]);
break;
case NATIVE_UINT64:
param = ULL2NUM(*(uint64_t *) parameters[i]);
break;
case NATIVE_LONG:
param = LONG2NUM(*(long *) parameters[i]);
break;
case NATIVE_ULONG:
param = ULONG2NUM(*(unsigned long *) parameters[i]);
break;
case NATIVE_FLOAT32:
param = rb_float_new(*(float *) parameters[i]);
break;
case NATIVE_FLOAT64:
param = rb_float_new(*(double *) parameters[i]);
break;
case NATIVE_STRING:
param = (*(void **) parameters[i] != NULL) ? rb_tainted_str_new2(*(char **) parameters[i]) : Qnil;
break;
case NATIVE_POINTER:
param = rbffi_Pointer_NewInstance(*(void **) parameters[i]);
break;
case NATIVE_BOOL:
param = (*(uint8_t *) parameters[i]) ? Qtrue : Qfalse;
break;
case NATIVE_FUNCTION:
case NATIVE_CALLBACK:
case NATIVE_STRUCT:
param = rbffi_NativeValue_ToRuby(paramType, rbParamType, parameters[i], Qnil);
break;
default:
param = Qnil;
break;
}
// Convert the native value into a custom ruby value
if (unlikely(cbInfo->parameterTypes[i]->nativeType == NATIVE_MAPPED)) {
VALUE values[] = { param, Qnil };
param = rb_funcall2(((MappedType *) cbInfo->parameterTypes[i])->rbConverter, id_from_native, 2, values);
}
rbParams[i] = param;
}
rbReturnValue = rb_funcall2(fn->rbProc, id_call, cbInfo->parameterCount, rbParams);
if (unlikely(returnType->nativeType == NATIVE_MAPPED)) {
VALUE values[] = { rbReturnValue, Qnil };
rbReturnValue = rb_funcall2(((MappedType *) returnType)->rbConverter, id_to_native, 2, values);
rbReturnType = ((MappedType *) returnType)->rbType;
returnType = ((MappedType* ) returnType)->type;
}
if (rbReturnValue == Qnil || TYPE(rbReturnValue) == T_NIL) {
memset(retval, 0, returnType->ffiType->size);
} else switch (returnType->nativeType) {
case NATIVE_INT8:
case NATIVE_INT16:
case NATIVE_INT32:
*((ffi_sarg *) retval) = NUM2INT(rbReturnValue);
break;
case NATIVE_UINT8:
case NATIVE_UINT16:
case NATIVE_UINT32:
*((ffi_arg *) retval) = NUM2UINT(rbReturnValue);
break;
case NATIVE_INT64:
*((int64_t *) retval) = NUM2LL(rbReturnValue);
break;
case NATIVE_UINT64:
*((uint64_t *) retval) = NUM2ULL(rbReturnValue);
break;
case NATIVE_LONG:
*((ffi_sarg *) retval) = NUM2LONG(rbReturnValue);
break;
case NATIVE_ULONG:
*((ffi_arg *) retval) = NUM2ULONG(rbReturnValue);
break;
case NATIVE_FLOAT32:
*((float *) retval) = (float) NUM2DBL(rbReturnValue);
break;
case NATIVE_FLOAT64:
*((double *) retval) = NUM2DBL(rbReturnValue);
break;
case NATIVE_POINTER:
if (TYPE(rbReturnValue) == T_DATA && rb_obj_is_kind_of(rbReturnValue, rbffi_PointerClass)) {
*((void **) retval) = ((AbstractMemory *) DATA_PTR(rbReturnValue))->address;
} else {
// Default to returning NULL if not a value pointer object. handles nil case as well
*((void **) retval) = NULL;
}
break;
case NATIVE_BOOL:
*((ffi_arg *) retval) = rbReturnValue == Qtrue;
break;
case NATIVE_FUNCTION:
case NATIVE_CALLBACK:
if (TYPE(rbReturnValue) == T_DATA && rb_obj_is_kind_of(rbReturnValue, rbffi_PointerClass)) {
*((void **) retval) = ((AbstractMemory *) DATA_PTR(rbReturnValue))->address;
} else if (rb_obj_is_kind_of(rbReturnValue, rb_cProc) || rb_respond_to(rbReturnValue, id_call)) {
VALUE function;
function = rbffi_Function_ForProc(rbReturnType, rbReturnValue);
*((void **) retval) = ((AbstractMemory *) DATA_PTR(function))->address;
} else {
*((void **) retval) = NULL;
}
break;
case NATIVE_STRUCT:
if (TYPE(rbReturnValue) == T_DATA && rb_obj_is_kind_of(rbReturnValue, rbffi_StructClass)) {
AbstractMemory* memory = ((Struct *) DATA_PTR(rbReturnValue))->pointer;
if (memory->address != NULL) {
memcpy(retval, memory->address, returnType->ffiType->size);
} else {
memset(retval, 0, returnType->ffiType->size);
}
} else {
memset(retval, 0, returnType->ffiType->size);
}
break;
default:
*((ffi_arg *) retval) = 0;
break;
}
return NULL;
}
static bool
callback_prep(void* ctx, void* code, Closure* closure, char* errmsg, size_t errmsgsize)
{
FunctionType* fnInfo = (FunctionType *) ctx;
ffi_status ffiStatus;
ffiStatus = ffi_prep_closure(code, &fnInfo->ffi_cif, callback_invoke, closure);
if (ffiStatus != FFI_OK) {
snprintf(errmsg, errmsgsize, "ffi_prep_closure failed. status=%#x", ffiStatus);
return false;
}
return true;
}
void
rbffi_Function_Init(VALUE moduleFFI)
{
rbffi_FunctionInfo_Init(moduleFFI);
rbffi_FunctionClass = rb_define_class_under(moduleFFI, "Function", rbffi_PointerClass);
rb_global_variable(&rbffi_FunctionClass);
rb_define_alloc_func(rbffi_FunctionClass, function_allocate);
rb_define_method(rbffi_FunctionClass, "initialize", function_initialize, -1);
rb_define_method(rbffi_FunctionClass, "call", function_call, -1);
rb_define_method(rbffi_FunctionClass, "attach", function_attach, 2);
rb_define_method(rbffi_FunctionClass, "free", function_release, 0);
rb_define_method(rbffi_FunctionClass, "autorelease=", function_set_autorelease, 1);
rb_define_method(rbffi_FunctionClass, "autorelease", function_autorelease_p, 0);
rb_define_method(rbffi_FunctionClass, "autorelease?", function_autorelease_p, 0);
id_call = rb_intern("call");
id_cbtable = rb_intern("@__ffi_callback_table__");
id_cb_ref = rb_intern("@__ffi_callback__");
id_to_native = rb_intern("to_native");
id_from_native = rb_intern("from_native");
}