require 'pybind' require 'pybind/autocall' include PyBind::Import pyfrom 'tensorflow.examples.tutorials.mnist', import: :input_data pyimport 'tensorflow', as: :tf DATA_DIR = '/tmp/tensorflow/mnist/input_data' # Import data mnist = input_data.read_data_sets(DATA_DIR, one_hot: true) # Create the model x = tf.placeholder(tf.float32, [nil, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b # Define loss and optimizer y_ = tf.placeholder(tf.float32, [nil, 10]) # The raw formulation of cross-entropy, # # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)), # reduction_indices: [1])) # # can be numerically unstable. # # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw # outputs of 'y', and then average across the batch. cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels: y_, logits: y)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() # Train 1000.times do batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict: { x => batch_xs, # but what I want is just x => batch_xs, y_ => batch_ys }) end # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) puts(sess.run(accuracy, feed_dict: { x => mnist.test.images, y_ => mnist.test.labels }))