# frozen_string_literal: true require 'svmkit/base/base_estimator' require 'svmkit/base/classifier' module SVMKit # This module consists of the classes that implement generalized linear models. module LinearModel # LogisticRegression is a class that implements Logistic Regression # with stochastic gradient descent (SGD) optimization. # Note that the class performs as a binary classifier. # # @example # estimator = # SVMKit::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # *Reference* # 1. S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011. class LogisticRegression include Base::BaseEstimator include Base::Classifier # Return the weight vector for Logistic Regression. # @return [Numo::DFloat] (shape: [n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for Logistic Regression. # @return [Float] attr_reader :bias_term # Return the random generator for transformation. # @return [Random] attr_reader :rng # Create a new classifier with Logisitc Regression by the SGD optimization. # # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # If fit_bias is true, the feature vector v becoms [v; bias_scale]. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = 0.0 @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels) # to be used for fitting the model. # @return [LogisticRegression] The learned classifier itself. def fit(x, y) # Generate binary labels. negative_label = y.to_a.uniq.sort.shift bin_y = y.to_a.map { |l| l != negative_label ? 1 : 0 } # Expand feature vectors for bias term. samples = x if @params[:fit_bias] samples = Numo::NArray.hstack( [samples, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]] ) end # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0...n_samples].shuffle(random: @rng) weight_vec = Numo::DFloat.zeros(n_features) # Start optimization. @params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) # update the weight vector. eta = 1.0 / (@params[:reg_param] * (t + 1)) mean_vec = Numo::DFloat.zeros(n_features) subset_ids.each do |n| z = weight_vec.dot(samples[n, true]) coef = bin_y[n] / (1.0 + Math.exp(bin_y[n] * z)) mean_vec += samples[n, true] * coef end mean_vec *= eta / @params[:batch_size] weight_vec = weight_vec * (1.0 - eta * @params[:reg_param]) + mean_vec # scale the weight vector. norm = Math.sqrt(weight_vec.dot(weight_vec)) scaler = (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12) weight_vec *= [1.0, scaler].min end # Store the learned model. if @params[:fit_bias] @weight_vec = weight_vec[0...n_features - 1] @bias_term = weight_vec[n_features - 1] else @weight_vec = weight_vec[0...n_features] @bias_term = 0.0 end self end # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample. def decision_function(x) @weight_vec.dot(x.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) Numo::Int32.cast(sigmoid(decision_function(x)).map { |v| v >= 0.5 ? 1 : -1 }) end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) n_samples, = x.shape proba = Numo::DFloat.zeros(n_samples, 2) proba[true, 1] = sigmoid(decision_function(x)) proba[true, 0] = 1.0 - proba[true, 1] proba end # Dump marshal data. # @return [Hash] The marshal data about LogisticRegression. def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end private def sigmoid(x) 1.0 / (Numo::NMath.exp(-x) + 1.0) end end end end