module Statsample module Regression module Multiple # Base class for Multiple Regression Engines class BaseEngine include GetText bindtextdomain("statsample") # Name of analysis attr_accessor :name def self.univariate? true end def initialize(ds, y_var, opts = Hash.new) @ds=ds @cases=@ds.cases @y_var=y_var @r2=nil @name=_("Multiple Regression: %s over %s") % [ ds.fields.join(",") , @y_var] opts.each{|k,v| self.send("#{k}=",v) if self.respond_to? k } end # Retrieves a vector with predicted values for y def predicted (0...@ds.cases).collect { |i| invalid=false vect=@dep_columns.collect {|v| invalid=true if v[i].nil?; v[i]} if invalid nil else process(vect) end }.to_vector(:scale) end # Retrieves a vector with standarized values for y def standarized_predicted predicted.standarized end # Retrieves a vector with residuals values for y def residuals (0...@ds.cases).collect{|i| invalid=false vect=@dep_columns.collect{|v| invalid=true if v[i].nil?; v[i]} if invalid or @ds[@y_var][i].nil? nil else @ds[@y_var][i] - process(vect) end }.to_vector(:scale) end # R Multiple def r raise "You should implement this" end # Sum of squares Total def sst raise "You should implement this" end # Sum of squares (regression) def ssr r2*sst end # Sum of squares (Error) def sse sst - ssr end # T values for coeffs def coeffs_t out={} se=coeffs_se coeffs.each do |k,v| out[k]=v / se[k] end out end # Mean square Regression def msr ssr.quo(df_r) end # Mean Square Error def mse sse.quo(df_e) end # Degrees of freedom for regression def df_r @dep_columns.size end # Degrees of freedom for error def df_e @ds_valid.cases-@dep_columns.size-1 end # Fisher for Anova def f (ssr.quo(df_r)).quo(sse.quo(df_e)) end # Significance of Fisher def significance (1.0-Distribution::F.cdf(f, df_r, df_e)).abs end # Tolerance for a given variable # http://talkstats.com/showthread.php?t=5056 def tolerance(var) ds=assign_names(@dep_columns) ds.each{|k,v| ds[k]=v.to_vector(:scale) } lr=self.class.new(ds.to_dataset,var) 1-lr.r2 end # Tolerances for each coefficient def coeffs_tolerances @fields.inject({}) {|a,f| a[f]=tolerance(f); a } end # Standard Error for coefficients def coeffs_se out={} mse=sse.quo(df_e) coeffs.each {|k,v| out[k]=Math::sqrt(mse/(@ds[k].sum_of_squares * tolerance(k))) } out end # Estandar error of R def se_r2 Math::sqrt((4*r2*(1-r2)**2*(df_e)**2).quo((@cases**2-1)*(@cases+3))) end # Estimated Variance-Covariance Matrix # Used for calculation of se of constant def estimated_variance_covariance_matrix mse_p=mse columns=[] @ds_valid.each_vector{|k,v| columns.push(v.data) unless k==@y_var } columns.unshift([1.0]*@ds_valid.cases) x=Matrix.columns(columns) matrix=((x.t*x)).inverse * mse matrix.collect {|i| Math::sqrt(i) if i>0 } end # T for constant def constant_t constant.to_f/constant_se end # Standard error for constant def constant_se estimated_variance_covariance_matrix[0,0] end def summary rp=ReportBuilder.new() rp.add(self) rp.to_text end def report_building(b) b.section(:name=>_("Multiple Regression: ")+@name) do |g| c=coeffs g.text(_("Engine: %s") % self.class) g.text(_("Cases(listwise)=%d(%d)") % [@ds.cases, @ds_valid.cases]) g.text("R=#{sprintf('%0.3f',r)}") g.text("R^2=#{sprintf('%0.3f',r2)}") g.text(_("Equation")+"="+ sprintf('%0.3f',constant) +" + "+ @fields.collect {|k| sprintf('%0.3f%s',c[k],k)}.join(' + ') ) g.table(:name=>"ANOVA", :header=>%w{source ss df ms f s}) do |t| t.row([_("Regression"), sprintf("%0.3f",ssr), df_r, sprintf("%0.3f",msr), sprintf("%0.3f",f), sprintf("%0.3f", significance)]) t.row([_("Error"), sprintf("%0.3f",sse), df_e, sprintf("%0.3f",mse)]) t.row([_("Total"), sprintf("%0.3f",sst), df_r+df_e]) end sc=standarized_coeffs cse=coeffs_se g.table(:name=>"Beta coefficients", :header=>%w{coeff b beta se t}.collect{|field| _(field)} ) do |t| t.row([_("Constant"), sprintf("%0.3f", constant), "-", sprintf("%0.3f", constant_se), sprintf("%0.3f", constant_t)]) @fields.each do |f| t.row([f, sprintf("%0.3f", c[f]), sprintf("%0.3f", sc[f]), sprintf("%0.3f", cse[f]), sprintf("%0.3f", c[f].quo(cse[f]))]) end end end end def assign_names(c) a={} @fields.each_index {|i| a[@fields[i]]=c[i] } a end # Sum of squares of regression # using the predicted value minus y mean def ssr_direct mean=@dy.mean cases=0 ssr=(0...@ds.cases).inject(0) {|a,i| invalid=false v=@dep_columns.collect{|c| invalid=true if c[i].nil?; c[i]} if !invalid cases+=1 a+((process(v)-mean)**2) else a end } ssr end def sse_direct sst-ssr end def process(v) c=coeffs total=constant @fields.each_index{|i| total+=c[@fields[i]]*v[i] } total end end end end end