ELF>B@H@8@ ``!`! xx!x!$$PtdkkkllQtdRtd``!`!GNU)7l]VN<è IH A1cءHUeʈ`H@T)0 dD HX QgTPb )AB P@ ^@@( B#^D` { (!$&(),-01235678;?@ABDEGHIJKLNOPRTVWZ\^bcfhijklnpqrtvwy|}+l8b9gU.(zM|8^s`ҡɐ˷KjKٸ&m|l Wff@:#1Bu-p $0q+UFAD4,U…dV>,[Dnԭl)^0߶^~̙M3mHyZ̬I Mu΍K_/۾lEF4:PVHnP rrS'ΥXP+;U# j$Ӣ/Zt$ƛp|:2Q1Td_ [I\B9s[ :+-tKɳ;k￐ 5qXdK3.Irp[1oθtv[Og vSB}X W !#EX3.INkLIݶn3F@B;&0e pj!% `:GG|v[$?6fxL_䘡_?Gˆ&r SBEjle^4k Ch#(XI~˗a'_qS i&4yE|^^a`V7ҝXQv9gt~dk MzbEdq6{w%@>S/Mh_7PSIԷ.r̳ .}E!BR:㯨& 9   Vq   $ wa 8 D R"  `yL  @IW  F!8  ,* M   x  8 ye !0p  = 0e j  k`!  a<  [   `{Y y9  9  `2 u y H Yg  m;. \ X y P" q%  7WX y  6  #  -  !}_ @x - y  >S `J   p s> }T Pw  ,*  00- PH@/    D6  % @U  P<: xa @l_^ _( `y 0[$ {F I `v `K  I  C< N J } QW @e F ]} `z;  0 0~- 0`   Pr 0_ n;1 t. ! `G [ @  2 0<   EX  @pR pxR k j+,   p pE9n Py  `+ ]   y @  91x  * p= vNL -  PM @/ st!z  rD lY $ ! Pu P@; o py K Ѓc K s  7+' i @b ! p  0      G ] "  p9  @J: R2 \ K py Q PN SF `  @ # 2  7X  U 0# @H =  _ PBu R Д\ G    J t U@ T1 e `[T' @ m_j z pNu CT  п `m3_ __gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassescompute_rho_estimatevec_norm_infadapt_rhoosqp_update_rhoset_rho_vecupdate_rho_vecswap_vectorscold_startupdate_xz_tildeupdate_xupdate_zprojectupdate_ycompute_obj_valquad_formvec_prodcompute_pri_resmat_vecvec_add_scaledvec_scaled_norm_infcompute_pri_tolcompute_dua_resprea_vec_copymat_tpose_veccompute_dua_tolis_primal_infeasiblevec_ew_prodis_dual_infeasiblehas_solutionstore_solutionunscale_solutionvec_mult_scalarupdate_infoosqp_tocupdate_statusc_strcpyreset_infovalidate_data__printf_chkputcharvalidate_linsys_solvervalidate_settingsputs_osqp_errorOSQP_ERROR_MESSAGEvec_norm_inf_diffvec_meanint_vec_set_scalarvec_add_scalarmemcpyprea_int_vec_copyvec_ew_reciprvec_ew_sqrtvec_ew_maxvec_ew_minvec_ew_max_vecvec_ew_min_vecmat_mult_scalarmat_premult_diagmat_postmult_diagmemsetmat_inf_norm_colsmat_inf_norm_rowsmat_inf_norm_cols_sym_triuosqp_set_default_settingsosqp_setupcallocosqp_ticcopy_settingsinit_linsys_solverprint_setup_headerosqp_solveosqp_start_interrupt_listenerosqp_is_interruptedosqp_end_interrupt_listenerprint_summaryfmodprint_headerprint_footerosqp_cleanupcsc_spfreeunload_linsys_solverosqp_update_lin_costosqp_update_boundsosqp_update_lower_boundosqp_update_upper_boundosqp_warm_startosqp_warm_start_xosqp_warm_start_yosqp_update_Punscale_dataosqp_update_Aosqp_update_P_Aosqp_update_max_iterosqp_update_eps_absosqp_update_eps_relosqp_update_eps_prim_infosqp_update_eps_dual_infosqp_update_alphaosqp_update_warm_startosqp_update_scaled_terminationosqp_update_check_terminationosqp_update_deltaosqp_update_polishosqp_update_polish_refine_iterosqp_update_verboseosqp_update_time_limitproject_normalconelimit_scalingcompute_inf_norm_cols_KKT__stack_chk_failosqp_versionLINSYS_SOLVER_NAMEprint_polishclock_gettimeform_KKTcsc_spalloctriplet_to_csrtriplet_to_cscupdate_KKT_Pupdate_KKT_Aupdate_KKT_param2csc_matrixcsc_cumsumcsc_pinvprea_copy_csc_matcsc_donecsc_sympermcsc_to_triulh_load_pardisolh_unload_pardisoinit_linsys_solver_pardisoinit_linsys_solver_qdldlsigemptysetoactsigactionlh_load_libdlopendlerrorlh_unload_libdlcloselh_load_symdlsym__ctype_toupper_loc__ctype_tolower_locamd_l1amd_l2amd_l_postorderamd_l_aatamd_l_controlSuiteSparse_configamd_l_defaultsamd_l_infoamd_l_orderamd_l_validSuiteSparse_mallocSuiteSparse_freeamd_l_preprocessamd_l_post_treeSuiteSparse_divcomplexSuiteSparse_hypotSuiteSparse_reallocSuiteSparse_ticSuiteSparse_tocSuiteSparse_timeSuiteSparse_versionprintffree_linsys_solver_qdldlupdate_linsys_solver_matrices_qdldlQDLDL_factorupdate_linsys_solver_rho_vec_qdldlsolve_linsys_qdldlQDLDL_etreepermute_xpermutet_xQDLDL_solveQDLDL_LsolveQDLDL_Ltsolvesolve_linsys_pardisofree_linsys_solver_pardisoupdate_linsys_solver_matrices_pardisoupdate_linsys_solver_rho_vec_pardisomkl_set_interface_layermkl_get_max_threadslibm.so.6librt.so.1libdl.so.2libc.so.6_edata__bss_start_endlibosqp.soGLIBC_2.2.5GLIBC_2.3.4GLIBC_2.14GLIBC_2.4GLIBC_2.3   ui 4   ui 4   ui 4  ti @ L ii W ui 4 ii a `!Ch!@C`!`!!Q!*Q!`Q!Q!Q!FQ!R!_Ȥ!_x!W!!I!E!&!!!!!'ȟ! П!F؟!!+!!!!!!! !L!!! !(!30!8!h@!H!P!X!`!h!p!x!!4!!r!\!1!!!!Ƞ!BР!ؠ!V!!y!n!z!!!R! !(!0!8!l@!H!P!;X!N`!|h!p!Ax!!!Z!?!!C! !G! !Jȡ!iС!.ء!Y!! !!!9!v!!c !(!t0!8!@! H!bP!SX!`!(h!qp!x!=!!!!!!!:!!~Ȣ!Т!آ!!!/!!6!!d!! !(!s0!>8!@!^H!oP!KX!]`!Ph!p!`x!k!{!M!f!D!!!Q!!Tȣ!У!أ!e!!!#!!!!U!g !(!0!8!@!H!aP!X!HHe!HtH5f!%f!@%f!h% f!h%f!h%e!h%e!h%e!h%e!h%e!hp%e!h`%e!h P%e!h @%e!h 0%e!h %e!h %e!h%e!h%e!h%e!h%e!h%ze!h%re!h%je!h%be!h%Ze!hp%Re!h`%Je!hP%Be!h@%:e!h0%2e!h %*e!h%"e!h%e!h%e!h % e!h!%e!h"%d!h#%d!h$%d!h%%d!h&%d!h'p%d!h(`%d!h)P%d!h*@%d!h+0%d!h, %d!h-%d!h.%d!h/%d!h0%d!h1%d!h2%zd!h3%rd!h4%jd!h5%bd!h6%Zd!h7p%Rd!h8`%Jd!h9P%Bd!h:@%:d!h;0%2d!h< %*d!h=%"d!h>%d!h?%d!h@% d!hA%d!hB%c!hC%c!hD%c!hE%c!hF%c!hGp%c!hH`%c!hIP%c!hJ@%c!hK0%c!hL %c!hM%c!hN%c!hO%c!hP%c!hQ%c!hR%zc!hS%rc!hT%jc!hU%bc!hV%Zc!hWp%Rc!hX`%Jc!hYP%Bc!hZ@%:c!h[0%2c!h\ %*c!h]%"c!h^%c!h_%c!h`% c!ha%c!hb%b!hc%b!hd%b!he%b!hf%b!hgp%b!hh`%b!hiP%b!hj@%b!hk0%b!hl %b!hm%b!hn%b!ho%b!hp%b!hq%b!hr%zb!hs%rb!ht%jb!hu%bb!hv%Zb!hwp%Rb!hx`%Jb!hyP%Bb!hz@%:b!h{0%2b!h| %*b!h}%"b!h~%b!h%b!h% b!h%b!h%a!h%a!h%a!h%a!h%a!hp%a!h`%\!f% ]!f%]!f%B]!fH=Yb!HYb!UH)HHvH\!Ht ]fD]@f.H=b!H5b!UH)HHHH?HHtH\!Ht ]f]@f.=a!u'H=\!UHt H=a!EH]a!@f.H=Y!H?u ^fDH9\!HtUH]@ATUSHH0HHXL`H(LH{PHD$}H{@LD$ kH{`LD$YT$H` H_L$Hx \$X^L$H{pHD$ L$H{hH_L$L$(L$\$H_d$ T$(X^X^Qf.z6Y f.v] H0[]A\fDH0_[]A\f(l$l$ff.SHHHP(f(Yf.w ^1f.vHHHBx[L Af.] HAHz- LO1LG(Hr(H  HJ0 = f(% 6f.v= j Ib A HH9B~L f.w\f.v;Af(IY^Af(HH9BAIf(A^f(x@_LIrH- MJ(E1MB0HW(1  f(= % Mf.v`H:t3Hw P HA Hw  :  IrHHH9}qA H Af.w\f.v`H:tHf(HHHAHwY^Hw  IrH9|It]1f.H:eHL_HA f(L_ ^IrA A(fHGHwHP HDf.HHHHSHHfH0H0HH{@fHpHH{8[fHpAWAVAUATUSL'HwHI$H LGPHNML$ LIPH9AI9A IQH9I9 D!H fHIJH9IRH9FLHHM9rL9K4t\A[]A\A]A^A_fD1fD\AHH9uD1fDAB`f(\AYY XHH9uHHPHLO Hw@AWAVAUATMYLfLGXUSL9LW8HAM9HAHoHE MXL,HD$L9AM9MuD JD5A!HAE!MZDL9AM9AE Ly`A!HI9HYhAH9D AIL9L9AAEcHHyH=ryqC8H5~lH=y8Df.SH}HHSCHPHS@C(HP@(HS C0@0HP HS8C@@@HP8ShCH@HPhHSxCP@PHPxCX@XC`@`Cp@pHHHHHHHHHH[ÐH}HwSH|HKHsHCH+HH)xff[H*H*^XfHfԛH*H*X\H,AWAVMAUATIUSHLAH8HGHt$HT$$HVHL$ It$IL$H<HHsHKHHH}HHD$H|$p$ID$H<{Ht$pH|$x$HHI|$ID$Lt$(1Lt$x1L$$L@DI@IH9 H9Ht$H<$HL^ LVLN(Lo Lg(,@H9H{IIH9HHL9~mH4ITHALLxI<1II tH\H9uXH|$ptH|$pI6HLHL $LT$,HIMw IO(I4LHHHH9uHT$HH $LT$LL$sH $1HtqLT$LL$MfDIAH4HHzH>ItI4IHH9u͹H(HL[]A\A]A^A_1 mDIH HHrH1ILHH9I ufIAH4HHzH>ItHH9I4u1yHT$H$rbDf.AWAVAUATUSH(LO(HGHo0Ht$HwLg MHLoHE1HL $HD$qHIǾnMH>HL $LT$,HIMw IO(I4LHHHH9uHT$HH $LT$LL$DqH $1HtqLT$LL$MfDIAH4HHzH>ItI4IHH9u͹H(HL[]A\A]A^A_1=kDIH HHrH1ILHH9I ufIAH4HHzH>ItHH9I4u1yHT$HTpbDf.AWAVAUATIUSIH(HGLOLw(HH_ IHD$K1MLE1H!LL $pLHD$+lH|$HHL $HD$LXL@ Lx(HD$HL4$11IDMI9IL9MHHLkCf.AUATUSHLgL;gHGLHALLJHkHI1M~xLU11fDIMDL9}SLM HfDI<H9+ME IIHMgHB1Lt$E1M\$H$I@K K4OLL9ImI\$ HALJ LIH9M.ImHH<dHI\HIU H@H9HBI9H HH^IHHHHTIFH8]cHD$HHPM~||$H|$ t XEH|$VHL$0Ht$811fHfAXDA)DHH9wHT$H9T$(tHT$@HXDIIL;HL$$\IIVHHr8Hd^IF1HP@Hp8IHxzbMFIMPLIPt[HpH~gHIxHIPHL 1fDAHH9t:H HuIH H HvLIxHHpf*aMFIPHIp@LVa1L_IVIBXH@R`f.XHvf.wX%'qf.wJf.vqf.w6H@0HD$PHPIFH8&[LZH1Z~JPH@0@@Hz8Iv0H8PHIH\IIv@HPIFHx@\IIv8HPIFHxH\IH^L^QfDHT$H1@XDHI9uHXHZ1H$G12op1fWAHH9uIHH@0dH5~t]HqIH@0IFH8YLhYHHYY?[IHH@0IFH8}YIHH@0IFH8VYLXfu 1[@1f.u 1Z@1f.EtAu MXDMYD=D Df.SH" H|$DŽ$dH%(H$1&\H HHH$XH$dH3%(u HĠ[YfDHH5b HdH%(H$1XH$dH3%(uHĨYf^ fUSHHtmHx\HHtHH[]fDHi}H5h1&]!_H5|HHڿ1] >W@H!}H5h11\H5W|1\ Vjf.Hg\HHAWAVIAUATL-|USI1HHdH%(H$81H$0HD$EwIcDLfLL]H$,^HIH9|H5g1\H5{LL1[ #V1H$8dH3%(HH[]A\A]A^A_Ht$DL&]H$]HI)H{H5g1g[H5({LL1N[ U@Lt$LLWƄ0_Ƅ1LrM4$H$ HEt3TH$ H8LHDHB HL2HEu_@@M4$Et_\Ht$HLHHBHL3PEuL)_@Ƅ H$ H$wHt$1HxKVf.AWAVLAUATHUSMHHhHL$HL$HH$H|$LD$PLL$XKHAH\$0LHD$(H\$8LH\$@LIHH\$6HH$IIL11HIHHH9uHT$ 1IDM4I9HD$K,H9L,IO+IHHIIIHHI I,K\/Ll$IEH9mI H9(I H9IH:HHHL9u1E1HLT$pL\$xL9}:HI+HHt}HHtHHt HHtHHtHHtHHtHHtHHtHHtH[fDUSHHHHLHHC`HHH(HLC0HH(HP HpHxs8Ap(MH M@HHH?[]f.ATUSHOxHLGXHI@H9HFI9HHHHM9rHt$IL9t 'B^ B HMHPH1ILLPHPH HIHIVLHHD$IFHD$(IFHIUHD$@IEHHD$0HK@IT$ E1It$I|$IHD$ HIt$H{@KH|$HD$HMIT$ID$H1H57= f.H|$ MfDIT$ID$HHLI9u"EIIIHLI9t MI:uIH[]LTHL9|HH9{HLHOH %.4eadaptive_rho must be either 0 or 1adaptive_rho_interval must be nonnegativeadaptive_rho_fraction must be positiveadaptive_rho_tolerance must be >= 1polish_refine_iter must be nonnegativeat least one of eps_abs and eps_rel must be positivealpha must be strictly between 0 and 2scaled_termination must be either 0 or 1check_termination must be nonnegativewarm_start must be either 0 or 1time_limit must be nonnegativevalidate_settingsvalidate_dataư>.A|=52T52TE-C6?@@?Aꌠ9Y>)F$@ꌠ9Y>)@??ERROR in %s: %s Problem data validation.Solver settings validation.Memory allocation.Linear system solver not available. Tried to obtain it from shared library.Linear system solver initialization.KKT matrix factorization. The problem seems to be non-convex.Solver workspace not initialized.quad_form matrix is not upper triangularquad_form?Solver interruptedFailed rho updatealpha must be between 0 and 2lower bound must be lower than or equal to upper boundupper bound must be greater than or equal to lower boundnew number of elements (%i) greater than elements in P (%i)new KKT matrix is not quasidefinitenew number of elements (%i) greater than elements in A (%i)eps_prim_inf must be nonnegativeeps_dual_inf must be nonnegativewarm_start should be either 0 or 1scaled_termination should be either 0 or 1check_termination should be nonnegativepolish should be either 0 or 1verbose should be either 0 or 1osqp_update_time_limitosqp_update_verboseosqp_update_verboseosqp_update_polish_refine_iterosqp_update_polish_refine_iterosqp_update_polishosqp_update_polishosqp_update_deltaosqp_update_deltaosqp_update_check_terminationosqp_update_check_terminationosqp_update_scaled_terminationosqp_update_scaled_terminationosqp_update_warm_startosqp_update_warm_startosqp_update_alphaosqp_update_alphaosqp_update_eps_dual_infosqp_update_eps_dual_infosqp_update_eps_prim_infosqp_update_eps_prim_infosqp_update_eps_relosqp_update_eps_relosqp_update_eps_absosqp_update_eps_absosqp_update_max_iterosqp_update_max_iterosqp_update_rhoosqp_update_rhoosqp_update_P_Aosqp_update_P_Aosqp_update_Aosqp_update_Aosqp_update_Posqp_update_Posqp_warm_start_yosqp_warm_start_xosqp_warm_startosqp_update_upper_boundosqp_update_upper_boundosqp_update_lower_boundosqp_update_lower_boundosqp_update_boundsosqp_update_boundsosqp_update_lin_costosqp_solveosqp_solveosqp_setup?@?MbP??)@9@@0.6.0iter timeproblem: nnz(P) + nnz(A) = %i settings: linear system solver = %s (%d threads), rho = %.2e (adaptive)sigma = %.2e, alpha = %.2f, max_iter = %i scaling: on, scaling: off, scaled_termination: onscaled_termination: off warm start: on, warm start: off, polish: on, polish: off, time_limit: %.2e sec time_limit: off%4i %12.4e %9.2e %9.2esplsh%4s --------status: %s number of iterations: %i optimal objective: %.4f run time: %.2es optimal rho estimate: %.2e objective pri res dua res rho OSQP v%s - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2019 variables n = %i, constraints m = %i eps_abs = %.1e, eps_rel = %.1e, eps_prim_inf = %.1e, eps_dual_inf = %.1e, check_termination: on (interval %i), check_termination: off, time_limit: %.2e sec, solution polish: successfulsolution polish: unsuccessfuleAMatrix M not squareUpper triangular matrix extraction failed (out of memory)csc_to_triuiterative_refinementqdldlmkl pardisono library name givenError while loading dynamic library %s: %sCannot find symbol %s in dynamic library, error = %sHȄXlh_load_symlh_load_lib@May 4, 2016 no rows treated as dense size of AMD integer: %d AMD version %d.%d.%d, %s: approximate minimum degree ordering dense row parameter: %g (rows with more than max (%g * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes aggressive absorption: no status: OK out of memory invalid matrix OK, but jumbled unknown AMD version %d.%d.%d, %s, results: n, dimension of A: %.20g nz, number of nonzeros in A: %.20g symmetry of A: %.4f number of nonzeros on diagonal: %.20g nonzeros in pattern of A+A' (excl. diagonal): %.20g # dense rows/columns of A+A': %.20g memory used, in bytes: %.20g # of memory compactions: %.20g The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): %.20g nonzeros in L (including diagonal): %.20g # divide operations for LDL' or LU: %.20g # multiply-subtract operations for LDL': %.20g # multiply-subtract operations for LU: %.20g max nz. in any column of L (incl. diagonal): %.20g chol flop count for real A, sqrt counted as 1 flop: %.20g LDL' flop count for real A: %.20g LDL' flop count for complex A: %.20g LU flop count for real A (with no pivoting): %.20g LU flop count for complex A (with no pivoting): %.20g "@ @& .>Error in KKT matrix LDL factorization when computing the elimination tree. A is not perfectly upper triangularError in KKT matrix LDL factorization when computing the nonzero elements. There are zeros in the diagonal matrixError in KKT matrix LDL factorization when computing the nonzero elements. The problem seems to be non-convexError forming and permuting KKT matrixLDL_factorinit_linsys_solver_qdldlError in forming KKT matrixError during linear system solution: %dError during MKL Pardiso cleanup: %dError during symbolic factorization: %dError during numerical factorization: %dsolve_linsys_pardisoinit_linsys_solver_pardisofree_linsys_solver_pardisoPardiso not loaded correctlylibmkl_rt.soMKL_Set_Interface_LayerMKL_Get_Max_Threadspardiso;l@`0H` `P0p0p 8 0 P ( p @ p  P0 H ` 0x p ` P  ` 0 P P h ` P h  ` Xp`  8p! ),H-@/0@2XP3447Pp:P?X0AA0BB0CC@D(D@@EXEp@FFPGG0HHH@I0IpMMpNNN0OH0S TUV W@ WXWx@]]^@^^X^x_@``(aPaxac`eHjpku8uPvh v@vvw ww(w@`z0}@ XP@H@  8 0 !00!p!`!"@"p"(#`#p##0#`@$$0%`%%&p&'('PP'zRx $FJ w?;*3$"DDHTBAA GP  AABG D  EABA `XAV9@ 8@ArDXBBB B(A0A8| 0A(B BBBI T\QBB B(A0A8.0A(B BBBH8dxZBB B(M0A8 0A(B BBBK M0A(B BBBMu$<@WAAJ0HAA4dxAAL V AAJ ZAA$AG0h AO <BAD J0  AABL l AAB$x1AG0 AN ,,@AG 1 CD  AB $\AG@L AK $,TAW H Y G D L LBBB B(A0A8GP 8A0A(B BBBC  4(EbdTBAA G@  FABG i  AABC ~  FABI   FABF D`EAA  ABE  FBA x FBH  $AD c AG D+K_,dQAE AB_Y_`3; ;$<,TDBAI g ABJ knHkrs.,QAE AB$,NFF aAB Tl, QAE AB,x QAE ABX@YLFSBB A(E0(A BBBG04dEDD  ABG jABLp-BBD A(J@ (A ABBK  (A ABBA ,PBAA  ABA , AAJ  AAA ,L BAA AB4|  AAH  AAH {EA d kBBB B(D0A8Mp 8C0A(B BBBA T 8A0A(B BBBF l4 KBB B(A0A8DpR 8D0A(B BBBJ Qp4 \AAD B DAC FDA4 0JAD m CAH hD KAA  ABE x FBH mD\ pxJAD  DAF { FAF GD xJAD  DAF { FAF G4 JAG a CAI p$$ !JM I p$L @"Jq E Plt "KBB A(A0 (A BBBH N (F BBBF |Q0l 8%KBB A(A0 (A BBBH N (F BBBF |Q0T 'BBB B(A0A8D` 8F0A(B BBBH  8D0A(B BBBK r 8F0A(B BBBG  8M0A(B BBBE , +NG 2 AH s-yrr4.yrrLp.yrrd.yrr|@/yrr$/Dk A @ H P0yrrx0yrr0yrrH1yrr1Br4(2yrrL2yrrd2YsN|@3Cx3`3\<4NBBE A(D0n(G BBBL4pBBE B(A0A8G`< 8A0A(B BBBA T87At8sAqh8`8#x8KK{D8-BBB A(D0D5 0A(A BBBD ,$<AAP  AAD ,TX=AAW  FAH ,>AAO  FAH >A? ?}Eu V L  @BBE B(D0A8Pp 8A0A(B BBBF \pEttE9F6D(F]BBE B(F0A8P@p8A0A(B BBB@FBFqd pFBBE B(D0A8T@ 8A0A(B BBBG g 8C0A(B BBBE tGD,@GPFAR mAAD $`GAAO hDA$GaAAJ RAA, H<BAD _ ABG L<HBBB B(A0A8D` 8G0A(B BBBL LIBBB B(A0A8D` 8G0A(B BBBL LKBBB B(D0A8G` 8D0A(B BBBO L,pO[BBA A(D0 (D ABBA { (C ABBA L|PG BBE B(A0A8D  8A0A(B BBBA ZZZ Z$,ZzAGk AA TZNGA A t([, [AAD ^ DAG [DIL[eBBE B(H0A8Q 8A0A(B BBBH t$]BBJ B(D0A8JJGDDDDGGBk8A0A(B BBBDt `BBB B(A0A8JBhH 8A0A(B BBBA @ 8A0A(B BBBE LXz BBB B(D0A8Jp 8A0A(B BBBD 4d~FAAD0 MAM t AAJ 084X AAGP nUF D AAJ 0BBE B(D0A8P 8A0A(B BBBA |BAFYbUAQBDL\thL_BBB B(A0A8DP 8A0A(B BBBH \EBB B(A0A8 0A(B BBBA T0A(B BBB,<ZDjALl@,ȎD r J P H b F f E xMDAAL0 DAK  DAI T DAG h#IP,$Dx[AG0L AA lID0 A *J<AAJ ](F0F8F@FHCPFXD`QEALh}BAA (F0F8F@FHCPFXD`Q E ABI T BBE B(D0A8OyHHBNFFFFCFAMi 8C0A(B BBBJ O 8F0A(B BBBB GSHI 8F0A(B BBBJ L 8C0A(B BBBH <`*Tx*LlBBB B(A0A8JP8 8C0A(B BBBH 4P-JC AH C\HBBB B(A0A89 0A(B BBBD U0H(B BBBTWlXL8+BBE B(D0A8P@ 8G0J(B BBBL 1BBI B(H0A8X@SHJPAXL`HhHpHxCCGP@ 8A0A(B BBBF B 8F0A(B BBBG DdȫJzH A(I0I8I@IHJPCXA`I N HDAAJ b(A0H8Z@HHHPHXG`ChCpPAALBAA  (A0H8Z@HHHPHXG`ChCpI H ABC D ; BBE B(D0A8OpxHBBTp:xZABGAGCCCSpr 8A0A(B BBBG BxAHBIAIFCNZp xDHHO C 8F0A(B BBBF \,!@BBB B(A0A8DPc 8A0A(B BBBE q8F0A(B BBB!pDJ!xDL$!Dx D I G !C@C    ) 9 K`!h!oX k ! ,)H o(ooD'o x!::&:6:F:V:f:v:::::::::;;&;6;F;V;f;v;;;;;;;;;<<&<6<F<V<f<v<<<<<<<<<==&=6=F=V=f=v=========>>&>6>F>V>f>v>>>>>>>>>??&?6?F?V?f?v?????????@@&@6@F@V@f@v@@@@@@@@@AA&A6AFAVAfAvAAAAAAAAABB&B6BFBVBfBvBB`!Q*Q`QQQFQR__GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.11) 5.4.0 20160609XD'(), 9 9 B B K0Kk q`!h!p!x!x!!`! ! p! B B. @CD !Sh!z C`!XP@PpR (Z Z Z *Y8YJYXpYjYx0YPY YYXXXXXXX"`X4pXB XT@XbWtXWW`WW W@WVWVV"`V4VB VT@VbUtVUU`UU U@UUh_ %._<FN [$!hvp` `` %:Lj^i pxj kk8!k0!(!@!%3p!?`!Lx!Ukh!t! ,* `2 P<  p @e  P@; %7 N i~  K PB PN u ` Ѓ J  `  0_ 0[$ @' : ]E aW P`r p9 6 px eJ @ > py  # )  9  -L !S  0  ^  0~-l  0<u  m_  R8  rD  PH@  pE9  -  K  K    R     lY)  X<  }E  x]  y|  Д\   p  EX  y  0#   [  `    y3  sA  K  _(V  7Wc !0v   #   [  y  91  @x   `y  F %  `J5  FD  T  yr      @l_  pN   7X  0  @  m;  `2  `m3;  CC  X  t.a  pp  @H }  j+       vN  0e   Pr  P( 1 zO п\ @Im  \  G  \ Q _ @p S @b `{Y t, py> HN @\!a| N k y *  n;!  q `y4N 8] j 0`}  {F =!8 `v !} ,* T1  `K- `z= I sZ }b v  Y 7+E  p 00- @ D k y  s Py `! % 5 O U@d  n Pw  @J" 9  QW _ PM CT#8 J Ii `[Tx ] !crtstuff.c__JCR_LIST__deregister_tm_clones__do_global_dtors_auxcompleted.7594__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entryauxil.c__FUNCTION__.5413__FUNCTION__.5429error.clin_alg.c__FUNCTION__.5171osqp.c__func__.5634__func__.5644__FUNCTION__.5647__func__.5658__FUNCTION__.5667__func__.5666__FUNCTION__.5678__func__.5677__FUNCTION__.5689__func__.5688__func__.5698__func__.5703__func__.5708__FUNCTION__.5719__func__.5718__FUNCTION__.5736__func__.5735__FUNCTION__.5757__func__.5756__FUNCTION__.5777__func__.5776__FUNCTION__.5786__func__.5785__FUNCTION__.5792__func__.5791__FUNCTION__.5798__func__.5797__FUNCTION__.5804__func__.5803__FUNCTION__.5810__func__.5809__FUNCTION__.5816__func__.5815__FUNCTION__.5822__func__.5821__FUNCTION__.5828__func__.5827__FUNCTION__.5834__func__.5833__FUNCTION__.5840__func__.5839__FUNCTION__.5846__func__.5845__FUNCTION__.5852__func__.5851__FUNCTION__.5858__func__.5857__func__.5863proj.cscaling.cutil.ckkt.ccs.c__FUNCTION__.5033polish.c__func__.5224lin_sys.cctrlc.chandle_ctrlcint_detectedlib_handler.c__FUNCTION__.5833__FUNCTION__.5873amd_1.camd_2.camd_aat.camd_control.camd_defaults.camd_info.camd_order.camd_post_tree.camd_postorder.camd_preprocess.camd_valid.cSuiteSparse_config.cqdldl_interface.c__FUNCTION__.5187__FUNCTION__.5143qdldl.cpardiso_interface.c__FUNCTION__.5025__FUNCTION__.4991__FUNCTION__.5010pardiso_loader.cfunc_pardisofunc_mkl_set_interface_layerfunc_mkl_get_max_threadsPardiso_handle__FRAME_END____JCR_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_permutet_x__ctype_toupper_loc@@GLIBC_2.3QDLDL_factorfree_linsys_solver_pardisoosqp_versiontriplet_to_cscvalidate_settingsinit_linsys_solver_pardisofree@@GLIBC_2.2.5SuiteSparse_divcomplexmat_inf_norm_cols_sym_triuputchar@@GLIBC_2.2.5lh_load_libupdate_xcsc_spfreeupdate_zvec_ew_prodosqp_update_Posqp_set_default_settingsosqp_warm_start_ITM_deregisterTMCloneTablehas_solutionosqp_update_boundsinit_linsys_solvercsc_matrixprea_copy_csc_matcsc_pinvputs@@GLIBC_2.2.5sigaction@@GLIBC_2.2.5update_KKT_Aupdate_KKT_param2osqp_update_upper_boundlh_load_symupdate_linsys_solver_rho_vec_pardisoosqp_update_scaled_terminationinit_linsys_solver_qdldlamd_l_post_treesolve_linsys_qdldl_edataamd_l_infomat_tpose_veccsc_donevec_norm_inf_diffcompute_pri_tolcold_startset_rho_vecprint_setup_headerlh_unload_pardiso_finiosqp_solvecompute_pri_rescsc_symperm__stack_chk_fail@@GLIBC_2.4vec_norm_infis_dual_infeasibleosqp_tocosqp_update_lower_boundosqp_update_polish_refine_iterosqp_cleanupprintf@@GLIBC_2.2.5SuiteSparse_hypotadapt_rhoosqp_update_max_iterc_strcpymat_inf_norm_rowscsc_to_triuosqp_update_alphaosqp_update_polishosqp_update_eps_dual_infprea_vec_copyquad_formreset_infoQDLDL_LsolveSuiteSparse_configcopy_settingsSuiteSparse_freememset@@GLIBC_2.2.5SuiteSparse_tocosqp_update_verbosesolve_linsys_pardisovec_ew_max_vecosqp_update_eps_absamd_l_controlfmod@@GLIBC_2.2.5lh_load_pardisoupdate_rho_vecosqp_update_P_Aosqp_update_check_terminationamd_l_preprocessSuiteSparse_versionvec_scaled_norm_infosqp_end_interrupt_listenercalloc@@GLIBC_2.2.5QDLDL_Ltsolveosqp_update_lin_costtriplet_to_csrint_vec_set_scalarmat_inf_norm_colsvec_meanprojectunload_linsys_solvervec_prodvec_add_scalarswap_vectors_osqp_errorsigemptyset@@GLIBC_2.2.5print_footeramd_l1vec_ew_sqrtvalidate_linsys_solver__gmon_start__osqp_warm_start_yprea_int_vec_copymemcpy@@GLIBC_2.14form_KKTosqp_ticosqp_start_interrupt_listenerprint_polishSuiteSparse_timeosqp_is_interruptedupdate_infolimit_scalingupdate_yupdate_linsys_solver_matrices_qdldldlopen@@GLIBC_2.2.5compute_dua_resmalloc@@GLIBC_2.2.5validate_datamat_premult_diagupdate_KKT_Posqp_update_deltaupdate_xz_tildeosqp_update_A_endclock_gettime@@GLIBC_2.2.5compute_inf_norm_cols_KKTvec_add_scaledosqp_update_warm_startdlclose@@GLIBC_2.2.5free_linsys_solver_qdldlrealloc@@GLIBC_2.2.5__bss_startvec_mult_scalarosqp_update_eps_prim_inf__printf_chk@@GLIBC_2.3.4amd_l_defaultsunscale_dataproject_normalconeosqp_update_rhomat_postmult_diagupdate_linsys_solver_matrices_pardisoOSQP_ERROR_MESSAGEvec_ew_maxupdate_linsys_solver_rho_vec_qdldlpermute_xcompute_dua_tolprint_headermat_mult_scalaramd_l_validunscale_solutionmat_vec_Jv_RegisterClassesprint_summaryosqp_update_time_limitQDLDL_solveQDLDL_etreeamd_l_ordercsc_cumsumosqp_setuposqp_update_eps_rellh_unload_libvec_ew_reciprvec_ew_min_vecoactcsc_spallocSuiteSparse_tic_ITM_registerTMCloneTableis_primal_infeasibleamd_l_aatsqrt@@GLIBC_2.2.5vec_ew_minSuiteSparse_reallocdlsym@@GLIBC_2.2.5__cxa_finalize@@GLIBC_2.2.5_initamd_l2compute_obj_valamd_l_postorderSuiteSparse_malloccompute_rho_estimatedlerror@@GLIBC_2.2.5osqp_warm_start_x__ctype_tolower_loc@@GLIBC_2.3store_solutionupdate_statusLINSYS_SOLVER_NAME.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.dynamic.got.plt.data.bss.comment$.oh8 XX@k HoD'D'Uo((d))HnB,, x99s99~BB BBkKK 0K0K kkl q q!`!`h!hp!px!xx!x!``!`  ! 05QHp