Sha256: 3e23cfb90b2746ed709fd8945fed0d85dfc60b2729e9f4cb8a7618a19cdfd25a
Contents?: true
Size: 1.48 KB
Versions: 6
Compression:
Stored size: 1.48 KB
Contents
module Statistics module Distribution class Weibull attr_accessor :shape, :scale # k and lambda def initialize(k, lamb) self.shape = k.to_f self.scale = lamb.to_f end def cumulative_function(random_value) return 0 if random_value < 0 1 - Math.exp(-((random_value/scale) ** shape)) end def density_function(value) return if shape <= 0 || scale <= 0 return 0 if value < 0 left = shape/scale center = (value/scale)**(shape - 1) right = Math.exp(-((value/scale)**shape)) left * center * right end def mean scale * Math.gamma(1 + (1/shape)) end def mode return 0 if shape <= 1 scale * (((shape - 1)/shape) ** (1/shape)) end def variance left = Math.gamma(1 + (2/shape)) right = Math.gamma(1 + (1/shape)) ** 2 (scale ** 2) * (left - right) end # Using the inverse CDF function, also called quantile, we can calculate # a random sample that follows a weibull distribution. # # Formula extracted from http://www.stat.yale.edu/Courses/1997-98/101/chigf.htm def random(elements: 1, seed: Random.new_seed) results = [] srand(seed) elements.times do results << ((-1/scale) * Math.log(1 - rand)) ** (1/shape) end if elements == 1 results.first else results end end end end end
Version data entries
6 entries across 6 versions & 1 rubygems