module Disco class Recommender attr_reader :global_mean, :item_factors, :user_factors def initialize(factors: 8, epochs: 20, verbose: nil) @factors = factors @epochs = epochs @verbose = verbose end def fit(train_set, validation_set: nil) train_set = to_dataset(train_set) validation_set = to_dataset(validation_set) if validation_set @implicit = !train_set.any? { |v| v[:rating] } unless @implicit ratings = train_set.map { |o| o[:rating] } check_ratings(ratings) @min_rating = ratings.min @max_rating = ratings.max if validation_set check_ratings(validation_set.map { |o| o[:rating] }) end end check_training_set(train_set) create_maps(train_set) @rated = Hash.new { |hash, key| hash[key] = {} } input = [] value_key = @implicit ? :value : :rating train_set.each do |v| u = @user_map[v[:user_id]] i = @item_map[v[:item_id]] @rated[u][i] = true # explicit will always have a value due to check_ratings input << [u, i, v[value_key] || 1] end @rated.default = nil eval_set = nil if validation_set eval_set = [] validation_set.each do |v| u = @user_map[v[:user_id]] i = @item_map[v[:item_id]] # set to non-existent item u ||= -1 i ||= -1 eval_set << [u, i, v[value_key] || 1] end end loss = @implicit ? 12 : 0 verbose = @verbose verbose = true if verbose.nil? && eval_set model = Libmf::Model.new(loss: loss, factors: @factors, iterations: @epochs, quiet: !verbose) model.fit(input, eval_set: eval_set) @global_mean = model.bias @user_factors = model.p_factors(format: :numo) @item_factors = model.q_factors(format: :numo) @user_index = nil @item_index = nil end # generates a prediction even if a user has already rated the item def predict(data) data = to_dataset(data) u = data.map { |v| @user_map[v[:user_id]] } i = data.map { |v| @item_map[v[:item_id]] } new_index = data.each_index.select { |index| u[index].nil? || i[index].nil? } new_index.each do |j| u[j] = 0 i[j] = 0 end predictions = @user_factors[u, true].inner(@item_factors[i, true]) predictions.inplace.clip(@min_rating, @max_rating) if @min_rating predictions[new_index] = @global_mean predictions.to_a end def user_recs(user_id, count: 5, item_ids: nil) check_fit u = @user_map[user_id] if u predictions = @item_factors.inner(@user_factors[u, true]) predictions = @item_map.keys.zip(predictions).map do |item_id, pred| {item_id: item_id, score: pred} end if item_ids idx = item_ids.map { |i| @item_map[i] }.compact predictions = predictions.values_at(*idx) else @rated[u].keys.sort_by { |v| -v }.each do |i| predictions.delete_at(i) end end predictions.sort_by! { |pred| -pred[:score] } # already sorted by id predictions = predictions.first(count) if count && !item_ids # clamp *after* sorting # also, only needed for returned predictions if @min_rating predictions.each do |pred| pred[:score] = pred[:score].clamp(@min_rating, @max_rating) end end predictions else # no items if user is unknown # TODO maybe most popular items [] end end def optimize_similar_items check_fit @item_index = create_index(@item_factors) end alias_method :optimize_item_recs, :optimize_similar_items def optimize_similar_users check_fit @user_index = create_index(@user_factors) end def similar_items(item_id, count: 5) check_fit similar(item_id, @item_map, @item_factors, item_norms, count, @item_index) end alias_method :item_recs, :similar_items def similar_users(user_id, count: 5) check_fit similar(user_id, @user_map, @user_factors, user_norms, count, @user_index) end private def create_index(factors) require "ngt" index = Ngt::Index.new(factors.shape[1], distance_type: "Cosine") index.batch_insert(factors) index end def user_norms @user_norms ||= norms(@user_factors) end def item_norms @item_norms ||= norms(@item_factors) end def norms(factors) norms = Numo::SFloat::Math.sqrt((factors * factors).sum(axis: 1)) norms[norms.eq(0)] = 1e-10 # no zeros norms end def similar(id, map, factors, norms, count, index) i = map[id] if i if index && count keys = map.keys result = index.search(factors[i, true], size: count + 1)[1..-1] result.map do |v| { # ids from batch_insert start at 1 instead of 0 item_id: keys[v[:id] - 1], # convert cosine distance to cosine similarity score: 1 - v[:distance] } end else predictions = factors.dot(factors[i, true]) / norms predictions = map.keys.zip(predictions).map do |item_id, pred| {item_id: item_id, score: pred} end max_score = predictions.delete_at(i)[:score] predictions.sort_by! { |pred| -pred[:score] } # already sorted by id predictions = predictions.first(count) if count # divide by max score to get cosine similarity # only need to do for returned records predictions.each { |pred| pred[:score] /= max_score } predictions end else [] end end def create_maps(train_set) user_ids = train_set.map { |v| v[:user_id] }.uniq.sort item_ids = train_set.map { |v| v[:item_id] }.uniq.sort raise ArgumentError, "Missing user_id" if user_ids.any?(&:nil?) raise ArgumentError, "Missing item_id" if item_ids.any?(&:nil?) @user_map = user_ids.zip(user_ids.size.times).to_h @item_map = item_ids.zip(item_ids.size.times).to_h end def check_ratings(ratings) unless ratings.all? { |r| !r.nil? } raise ArgumentError, "Missing ratings" end unless ratings.all? { |r| r.is_a?(Numeric) } raise ArgumentError, "Ratings must be numeric" end end def check_training_set(train_set) raise ArgumentError, "No training data" if train_set.empty? end def check_fit raise "Not fit" unless defined?(@implicit) end def to_dataset(dataset) if defined?(Rover::DataFrame) && dataset.is_a?(Rover::DataFrame) # convert keys to symbols dataset = dataset.dup dataset.keys.each do |k, v| dataset[k.to_sym] ||= dataset.delete(k) end dataset.to_a elsif defined?(Daru::DataFrame) && dataset.is_a?(Daru::DataFrame) # convert keys to symbols dataset = dataset.dup new_names = dataset.vectors.to_a.map { |k| [k, k.to_sym] }.to_h dataset.rename_vectors!(new_names) dataset.to_a[0] else dataset end end def marshal_dump obj = { implicit: @implicit, user_map: @user_map, item_map: @item_map, rated: @rated, global_mean: @global_mean, user_factors: @user_factors, item_factors: @item_factors } unless @implicit obj[:min_rating] = @min_rating obj[:max_rating] = @max_rating end obj end def marshal_load(obj) @implicit = obj[:implicit] @user_map = obj[:user_map] @item_map = obj[:item_map] @rated = obj[:rated] @global_mean = obj[:global_mean] @user_factors = obj[:user_factors] @item_factors = obj[:item_factors] unless @implicit @min_rating = obj[:min_rating] @max_rating = obj[:max_rating] end end end end