Sha256: 3cc9f3d61ec7a88496569becefefa5fb4892a1f1844f976b7b0f30ef60833918
Contents?: true
Size: 1.7 KB
Versions: 6
Compression:
Stored size: 1.7 KB
Contents
require File.dirname(__FILE__) + '/example_helper' require 'enumerator' # Solves the sudoku problem: http://en.wikipedia.org/wiki/Soduko # The sudoku we want to solve (0 represents that the square is empty). sudoku = Matrix[ [0,0,0, 2,0,5, 0,0,0], [0,9,0, 0,0,0, 7,3,0], [0,0,2, 0,0,9, 0,6,0], [2,0,0, 0,0,0, 4,0,9], [0,0,0, 0,7,0, 0,0,0], [6,0,9, 0,0,0, 0,0,1], [0,8,0, 4,0,0, 1,0,0], [0,6,3, 0,0,0, 0,8,0], [0,0,0, 6,0,8, 0,0,0]] solution = Gecode.solve do # Verify that the input is of a valid size. @size = n = sudoku.row_size sub_matrix_size = Math.sqrt(n).round unless sudoku.square? and sub_matrix_size**2 == n raise ArgumentError, 'Incorrect value matrix size.' end sub_count = sub_matrix_size # Create the squares and initialize them. squares_is_an int_var_matrix(n, n, 1..n) sudoku.row_size.times do |i| sudoku.column_size.times do |j| squares[i,j].must == sudoku[i,j] unless sudoku[i,j] == 0 end end # Constraints. n.times do |i| # All rows must contain distinct numbers. squares.row(i).must_be.distinct(:strength => :domain) # All columns must contain distinct numbers. squares.column(i).must_be.distinct(:strength => :domain) # All sub-matrices must contain distinct numbers. squares.minor( (i % sub_count) * sub_matrix_size, sub_matrix_size, (i / sub_count) * sub_matrix_size, sub_matrix_size).must_be.distinct(:strength => :domain) end # Branching, we use first-fail heuristic. branch_on squares, :variable => :smallest_size, :value => :min end.squares.values # Output the solved sudoku in a grid. puts solution.enum_slice(sudoku.row_size).map{ |slice| slice.join(' ') }.join($/)
Version data entries
6 entries across 6 versions & 2 rubygems