require 'matrix_extension' module Statsample module MLE # Probit MLE estimation. # Usage: # # mle=Statsample::MLE::Probit.new # mle.newton_raphson(x,y) # beta=mle.parameters # likehood=mle.likehood(x,y,beta) # iterations=mle.iterations class Probit < BaseMLE # F(B'Xi) if HAS_GSL # F(B'Xi) def f(b,x) p_bx=(x*b)[0,0] GSL::Cdf::ugaussian_P(p_bx) end # f(B'Xi) def ff(b,x) p_bx=(x*b)[0,0] GSL::Ran::ugaussian_pdf(p_bx) end else def f(b,x) #:nodoc: p_bx=(x*b)[0,0] Distribution::Normal.cdf(p_bx) end def ff(b,x) #:nodoc: p_bx=(x*b)[0,0] Distribution::Normal.pdf(p_bx) end end # Log Likehood for x_i vector, y_i scalar and b parameters def log_likehood_i(xi,yi,b) fbx=f(b,xi) (yi.to_f*Math::log(fbx))+((1.0-yi.to_f)*Math::log(1.0-fbx)) end # First derivative of log-likehood probit function # x: Matrix (NxM) # y: Matrix (Nx1) # p: Matrix (Mx1) def first_derivative(x,y,b) raise "x.rows!=y.rows" if x.row_size!=y.row_size raise "x.columns!=p.rows" if x.column_size!=b.row_size n = x.row_size k = x.column_size fd = Array.new(k) k.times {|i| fd[i] = [0.0]} n.times do |i| xi = Matrix.rows([x.row(i).to_a]) fbx=f(b,xi) value1 = (y[i,0]-fbx)/ ( fbx*(1-fbx))*ff(b,xi) k.times do |j| fd[j][0] += value1*xi[0,j] end end Matrix.rows(fd, true) end # Second derivative of log-likehood probit function # x: Matrix (NxM) # y: Matrix (Nx1) # p: Matrix (Mx1) def second_derivative(x,y,b) raise "x.rows!=y.rows" if x.row_size!=y.row_size raise "x.columns!=p.rows" if x.column_size!=b.row_size n = x.row_size k = x.column_size if HAS_GSL sum=GSL::Matrix.zeros(k) else sum=Matrix.zero(k) end n.times do |i| xi=Matrix.rows([x.row(i).to_a]) fbx=f(b,xi) val=((ff(b,xi)**2) / (fbx*(1.0-fbx)))*xi.t*xi if HAS_GSL val=val.to_gsl end sum-=val end if HAS_GSL sum=sum.to_matrix end sum end end # Probit end # MLE end # Statsample