Sha256: 3c8994e28b7cd0fbbb312837605c62b3f77d5bf946752358c2a2360aec3d4073
Contents?: true
Size: 1.46 KB
Versions: 9
Compression:
Stored size: 1.46 KB
Contents
# = Scatterplot # Scatterplots can facilitate visual analysis along multiple dimensions, though care should be taken to avoid interference. In this example, we encode three dimensions: two are encoded using position, while the third is redundantly encoded as both area and color. $:.unshift(File.dirname(__FILE__)+"/../lib") require 'rubyvis' data = pv.range(100).map {|x| OpenStruct.new({x: x, y: rand(), z: 10**(2*rand)}) } w = 400 h = 400 x = pv.Scale.linear(0, 99).range(0, w) y = pv.Scale.linear(0, 1).range(0, h) c = pv.Scale.log(1, 100).range("orange", "brown") # The root panel. vis = pv.Panel.new() .width(w) .height(h) .bottom(20) .left(20) .right(10) .top(5); # Y-axis and ticks. vis.add(pv.Rule) .data(y.ticks()) .bottom(y) .strokeStyle(lambda {|d| d!=0 ? "#eee" : "#000"}) .anchor("left").add(pv.Label) .visible(lambda {|d| d > 0 and d < 1}) .text(y.tick_format) # X-axis and ticks. vis.add(pv.Rule) .data(x.ticks()) .left(x) .stroke_style(lambda {|d| d!=0 ? "#eee" : "#000"}) .anchor("bottom").add(pv.Label) .visible(lambda {|d| d > 0 and d < 100}) .text(x.tick_format); #/* The dot plot! */ vis.add(pv.Panel) .data(data) .add(pv.Dot) .left(lambda {|d| x.scale(d.x)}) .bottom(lambda {|d| y.scale(d.y)}) .stroke_style(lambda {|d| c.scale(d.z)}) .fill_style(lambda {|d| c.scale(d.z).alpha(0.2)}) .shape_size(lambda {|d| d.z}) .title(lambda {|d| "%0.1f" % d.z}) vis.render() puts vis.to_svg
Version data entries
9 entries across 9 versions & 1 rubygems