# frozen_string_literal: true require 'svmkit/validation' require 'svmkit/base/base_estimator' require 'svmkit/base/classifier' require 'svmkit/tree/node' module SVMKit # This module consists of the classes that implement tree models. module Tree # DecisionTreeClassifier is a class that implements decision tree for classification. # # @example # estimator = # SVMKit::Tree::DecisionTreeClassifier.new( # criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # class DecisionTreeClassifier include Base::BaseEstimator include Base::Classifier # Return the class labels. # @return [Numo::Int32] (size: n_classes) attr_reader :classes # Return the importance for each feature. # @return [Numo::DFloat] (size: n_features) attr_reader :feature_importances # Return the learned tree. # @return [Node] attr_reader :tree # Return the random generator for random selection of feature index. # @return [Random] attr_reader :rng # Return the labels assigned each leaf. # @return [Numo::Int32] (size: n_leafs) attr_reader :leaf_labels # Create a new classifier with decision tree algorithm. # # @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'. # @param max_depth [Integer] The maximum depth of the tree. # If nil is given, decision tree grows without concern for depth. # @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree. # If nil is given, number of leaves is not limited. # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node. # @param max_features [Integer] The number of features to consider when searching optimal split point. # If nil is given, split process considers all features. # @param random_seed [Integer] The seed value using to initialize the random generator. # It is used to randomly determine the order of features when deciding spliting point. def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) SVMKit::Validation.check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, max_features: max_features, random_seed: random_seed) SVMKit::Validation.check_params_integer(min_samples_leaf: min_samples_leaf) SVMKit::Validation.check_params_string(criterion: criterion) SVMKit::Validation.check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features) @params = {} @params[:criterion] = criterion @params[:max_depth] = max_depth @params[:max_leaf_nodes] = max_leaf_nodes @params[:min_samples_leaf] = min_samples_leaf @params[:max_features] = max_features @params[:random_seed] = random_seed @params[:random_seed] ||= srand @criterion = :gini @criterion = :entropy if @params[:criterion] == 'entropy' @tree = nil @classes = nil @feature_importances = nil @n_leaves = nil @leaf_labels = nil @rng = Random.new(@params[:random_seed]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [DecisionTreeClassifier] The learned classifier itself. def fit(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) SVMKit::Validation.check_sample_label_size(x, y) n_samples, n_features = x.shape @params[:max_features] = n_features if @params[:max_features].nil? @params[:max_features] = [@params[:max_features], n_features].min @classes = Numo::Int32.asarray(y.to_a.uniq.sort) build_tree(x, y) eval_importance(n_samples, n_features) self end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) SVMKit::Validation.check_sample_array(x) @leaf_labels[apply(x)] end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) SVMKit::Validation.check_sample_array(x) probs = Numo::DFloat[*(Array.new(x.shape[0]) { |n| predict_at_node(@tree, x[n, true]) })] probs[true, @classes] end # Return the index of the leaf that each sample reached. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Leaf index for sample. def apply(x) SVMKit::Validation.check_sample_array(x) Numo::Int32[*(Array.new(x.shape[0]) { |n| apply_at_node(@tree, x[n, true]) })] end # Dump marshal data. # @return [Hash] The marshal data about DecisionTreeClassifier def marshal_dump { params: @params, classes: @classes, criterion: @criterion, tree: @tree, feature_importances: @feature_importances, leaf_labels: @leaf_labels, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] @classes = obj[:classes] @criterion = obj[:criterion] @tree = obj[:tree] @feature_importances = obj[:feature_importances] @leaf_labels = obj[:leaf_labels] @rng = obj[:rng] nil end private def predict_at_node(node, sample) return node.probs if node.leaf branch_at_node('predict', node, sample) end def apply_at_node(node, sample) return node.leaf_id if node.leaf branch_at_node('apply', node, sample) end def branch_at_node(action, node, sample) return send("#{action}_at_node", node.left, sample) if node.right.nil? return send("#{action}_at_node", node.right, sample) if node.left.nil? if sample[node.feature_id] <= node.threshold send("#{action}_at_node", node.left, sample) else send("#{action}_at_node", node.right, sample) end end def build_tree(x, y) @n_leaves = 0 @leaf_labels = [] @tree = grow_node(0, x, y) @leaf_labels = Numo::Int32[*@leaf_labels] nil end def grow_node(depth, x, y) if @params[:max_leaf_nodes].is_a?(Integer) return nil if @n_leaves >= @params[:max_leaf_nodes] end n_samples, n_features = x.shape if @params[:min_samples_leaf].is_a?(Integer) return nil if n_samples <= @params[:min_samples_leaf] end node = Node.new(depth: depth, impurity: impurity(y), n_samples: n_samples) return put_leaf(node, y) if y.to_a.uniq.size == 1 if @params[:max_depth].is_a?(Integer) return put_leaf(node, y) if depth == @params[:max_depth] end feature_id, threshold, left_ids, right_ids, max_gain = rand_ids(n_features).map { |f_id| [f_id, *best_split(x[true, f_id], y)] }.max_by(&:last) return put_leaf(node, y) if max_gain.nil? return put_leaf(node, y) if max_gain.zero? node.left = grow_node(depth + 1, x[left_ids, true], y[left_ids]) node.right = grow_node(depth + 1, x[right_ids, true], y[right_ids]) return put_leaf(node, y) if node.left.nil? && node.right.nil? node.feature_id = feature_id node.threshold = threshold node.leaf = false node end def put_leaf(node, y) node.probs = y.bincount(minlength: @classes.max + 1) / node.n_samples.to_f node.leaf = true node.leaf_id = @n_leaves @n_leaves += 1 @leaf_labels.push(node.probs.max_index) node end def rand_ids(n) [*0...n].sample(@params[:max_features], random: @rng) end def best_split(features, labels) features.to_a.uniq.sort.each_cons(2).map do |l, r| threshold = 0.5 * (l + r) left_ids, right_ids = splited_ids(features, threshold) [threshold, left_ids, right_ids, gain(labels, labels[left_ids], labels[right_ids])] end.max_by(&:last) end def splited_ids(features, threshold) [features.le(threshold).where.to_a, features.gt(threshold).where.to_a] end def gain(labels, labels_left, labels_right) prob_left = labels_left.size / labels.size.to_f prob_right = labels_right.size / labels.size.to_f impurity(labels) - prob_left * impurity(labels_left) - prob_right * impurity(labels_right) end def impurity(labels) posterior_probs = Numo::DFloat[*(labels.to_a.uniq.sort.map { |c| labels.eq(c).count })] / labels.size.to_f send(@criterion, posterior_probs) end def gini(posterior_probs) 1.0 - (posterior_probs * posterior_probs).sum end def entropy(posterior_probs) -(posterior_probs * Numo::NMath.log(posterior_probs)).sum end def eval_importance(n_samples, n_features) @feature_importances = Numo::DFloat.zeros(n_features) eval_importance_at_node(@tree) @feature_importances /= n_samples normalizer = @feature_importances.sum @feature_importances /= normalizer if normalizer > 0.0 nil end def eval_importance_at_node(node) return nil if node.leaf return nil if node.left.nil? || node.right.nil? gain = node.n_samples * node.impurity - node.left.n_samples * node.left.impurity - node.right.n_samples * node.right.impurity @feature_importances[node.feature_id] += gain eval_importance_at_node(node.left) eval_importance_at_node(node.right) end end end end