Sha256: 3bb16d0455ce4fef33e03c459c54f69ded19a5a816f1ff91320b52ab1085a1e8
Contents?: true
Size: 1.47 KB
Versions: 5
Compression:
Stored size: 1.47 KB
Contents
module DNN module Initializers class Initializer def init_param(layer, param_key, param) layer.params[param_key] = param end def to_hash(merge_hash = nil) hash = {class: self.class.name} hash.merge!(merge_hash) if merge_hash hash end end class Zeros < Initializer def init_param(layer, param_key) super(layer, param_key, layer.params[param_key].fill(0)) end end class RandomNormal < Initializer attr_reader :mean attr_reader :std def self.load_hash(hash) self.new(hash[:mean], hash[:std]) end def initialize(mean = 0, std = 0.05) @mean = mean @std = std end def init_param(layer, param_key) super(layer, param_key, layer.params[param_key].rand_norm(@mean, @std)) end def to_hash super({mean: @mean, std: @std}) end end class Xavier < Initializer def init_param(layer, param_key) prev_dim = layer.prev_layer.shape.reduce(:*) super(layer, param_key, layer.params[param_key].rand_norm / Math.sqrt(prev_dim)) end end class He < Initializer def init_param(layer, param_key) prev_dim = layer.prev_layer.shape.reduce(:*) super(layer, param_key, layer.params[param_key].rand_norm / Math.sqrt(prev_dim) * Math.sqrt(2)) end end end end
Version data entries
5 entries across 5 versions & 1 rubygems