/* * sha2.c * * Version 1.0.0beta1 * * Written by Aaron D. Gifford * * Copyright 2000 Aaron D. Gifford. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* $RoughId: sha2.c,v 1.3 2002/02/26 22:03:36 knu Exp $ */ /* $Id: sha2.c 11708 2007-02-12 23:01:19Z shyouhei $ */ #include "sha2.h" #include #include /* memcpy()/memset() or bcopy()/bzero() */ #include /* assert() */ /* * ASSERT NOTE: * Some sanity checking code is included using assert(). On my FreeBSD * system, this additional code can be removed by compiling with NDEBUG * defined. Check your own systems manpage on assert() to see how to * compile WITHOUT the sanity checking code on your system. * * UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file). Either define on the command line, for example: * * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * * #define SHA2_UNROLL_TRANSFORM * */ /*** SHA-256/384/512 Machine Architecture Definitions *****************/ typedef uint8_t sha2_byte; /* Exactly 1 byte */ typedef uint32_t sha2_word32; /* Exactly 4 bytes */ typedef uint64_t sha2_word64; /* Exactly 8 bytes */ #if defined(__GNUC__) || defined(_HPUX_SOURCE) || defined(__IBMC__) #define ULL(number) number##ULL #else #define ULL(number) (uint64_t)(number) #endif /*** SHA-256/384/512 Various Length Definitions ***********************/ /* NOTE: Most of these are in sha2.h */ #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) /*** ENDIAN REVERSAL MACROS *******************************************/ #ifndef WORDS_BIGENDIAN #define REVERSE32(w,x) { \ sha2_word32 tmp = (w); \ tmp = (tmp >> 16) | (tmp << 16); \ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ } #define REVERSE64(w,x) { \ sha2_word64 tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & ULL(0xff00ff00ff00ff00)) >> 8) | \ ((tmp & ULL(0x00ff00ff00ff00ff)) << 8); \ (x) = ((tmp & ULL(0xffff0000ffff0000)) >> 16) | \ ((tmp & ULL(0x0000ffff0000ffff)) << 16); \ } #endif /* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) { \ (w)[0] += (sha2_word64)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \ } /* * Macros for copying blocks of memory and for zeroing out ranges * of memory. Using these macros makes it easy to switch from * using memset()/memcpy() and using bzero()/bcopy(). * * Please define either SHA2_USE_MEMSET_MEMCPY or define * SHA2_USE_BZERO_BCOPY depending on which function set you * choose to use: */ #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) /* Default to memset()/memcpy() if no option is specified */ #define SHA2_USE_MEMSET_MEMCPY 1 #endif #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) /* Abort with an error if BOTH options are defined */ #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! #endif #ifdef SHA2_USE_MEMSET_MEMCPY #define MEMSET_BZERO(p,l) memset((p), 0, (l)) #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) #endif #ifdef SHA2_USE_BZERO_BCOPY #define MEMSET_BZERO(p,l) bzero((p), (l)) #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) #endif /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /* Four of six logical functions used in SHA-384 and SHA-512: */ #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) /*** INTERNAL FUNCTION PROTOTYPES *************************************/ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ void SHA512_Last(SHA512_CTX*); void SHA256_Transform(SHA256_CTX*, const sha2_word32*); void SHA512_Transform(SHA512_CTX*, const sha2_word64*); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-256: */ const static sha2_word32 K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-256: */ const static sha2_word32 sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; /* Hash constant words K for SHA-384 and SHA-512: */ const static sha2_word64 K512[80] = { ULL(0x428a2f98d728ae22), ULL(0x7137449123ef65cd), ULL(0xb5c0fbcfec4d3b2f), ULL(0xe9b5dba58189dbbc), ULL(0x3956c25bf348b538), ULL(0x59f111f1b605d019), ULL(0x923f82a4af194f9b), ULL(0xab1c5ed5da6d8118), ULL(0xd807aa98a3030242), ULL(0x12835b0145706fbe), ULL(0x243185be4ee4b28c), ULL(0x550c7dc3d5ffb4e2), ULL(0x72be5d74f27b896f), ULL(0x80deb1fe3b1696b1), ULL(0x9bdc06a725c71235), ULL(0xc19bf174cf692694), ULL(0xe49b69c19ef14ad2), ULL(0xefbe4786384f25e3), ULL(0x0fc19dc68b8cd5b5), ULL(0x240ca1cc77ac9c65), ULL(0x2de92c6f592b0275), ULL(0x4a7484aa6ea6e483), ULL(0x5cb0a9dcbd41fbd4), ULL(0x76f988da831153b5), ULL(0x983e5152ee66dfab), ULL(0xa831c66d2db43210), ULL(0xb00327c898fb213f), ULL(0xbf597fc7beef0ee4), ULL(0xc6e00bf33da88fc2), ULL(0xd5a79147930aa725), ULL(0x06ca6351e003826f), ULL(0x142929670a0e6e70), ULL(0x27b70a8546d22ffc), ULL(0x2e1b21385c26c926), ULL(0x4d2c6dfc5ac42aed), ULL(0x53380d139d95b3df), ULL(0x650a73548baf63de), ULL(0x766a0abb3c77b2a8), ULL(0x81c2c92e47edaee6), ULL(0x92722c851482353b), ULL(0xa2bfe8a14cf10364), ULL(0xa81a664bbc423001), ULL(0xc24b8b70d0f89791), ULL(0xc76c51a30654be30), ULL(0xd192e819d6ef5218), ULL(0xd69906245565a910), ULL(0xf40e35855771202a), ULL(0x106aa07032bbd1b8), ULL(0x19a4c116b8d2d0c8), ULL(0x1e376c085141ab53), ULL(0x2748774cdf8eeb99), ULL(0x34b0bcb5e19b48a8), ULL(0x391c0cb3c5c95a63), ULL(0x4ed8aa4ae3418acb), ULL(0x5b9cca4f7763e373), ULL(0x682e6ff3d6b2b8a3), ULL(0x748f82ee5defb2fc), ULL(0x78a5636f43172f60), ULL(0x84c87814a1f0ab72), ULL(0x8cc702081a6439ec), ULL(0x90befffa23631e28), ULL(0xa4506cebde82bde9), ULL(0xbef9a3f7b2c67915), ULL(0xc67178f2e372532b), ULL(0xca273eceea26619c), ULL(0xd186b8c721c0c207), ULL(0xeada7dd6cde0eb1e), ULL(0xf57d4f7fee6ed178), ULL(0x06f067aa72176fba), ULL(0x0a637dc5a2c898a6), ULL(0x113f9804bef90dae), ULL(0x1b710b35131c471b), ULL(0x28db77f523047d84), ULL(0x32caab7b40c72493), ULL(0x3c9ebe0a15c9bebc), ULL(0x431d67c49c100d4c), ULL(0x4cc5d4becb3e42b6), ULL(0x597f299cfc657e2a), ULL(0x5fcb6fab3ad6faec), ULL(0x6c44198c4a475817) }; /* Initial hash value H for SHA-384 */ const static sha2_word64 sha384_initial_hash_value[8] = { ULL(0xcbbb9d5dc1059ed8), ULL(0x629a292a367cd507), ULL(0x9159015a3070dd17), ULL(0x152fecd8f70e5939), ULL(0x67332667ffc00b31), ULL(0x8eb44a8768581511), ULL(0xdb0c2e0d64f98fa7), ULL(0x47b5481dbefa4fa4) }; /* Initial hash value H for SHA-512 */ const static sha2_word64 sha512_initial_hash_value[8] = { ULL(0x6a09e667f3bcc908), ULL(0xbb67ae8584caa73b), ULL(0x3c6ef372fe94f82b), ULL(0xa54ff53a5f1d36f1), ULL(0x510e527fade682d1), ULL(0x9b05688c2b3e6c1f), ULL(0x1f83d9abfb41bd6b), ULL(0x5be0cd19137e2179) }; /*** SHA-256: *********************************************************/ void SHA256_Init(SHA256_CTX* context) { if (context == (SHA256_CTX*)0) { return; } MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH); context->bitcount = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #ifndef WORDS_BIGENDIAN #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ REVERSE32(*data++, W256[j]); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #else #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + (W256[j] = *data++); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #endif #define ROUND256(a,b,c,d,e,f,g,h) \ s0 = W256[(j+1)&0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { sha2_word32 a, b, c, d, e, f, g, h, s0, s1; sha2_word32 T1, *W256; int j; W256 = (sha2_word32*)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ ROUND256_0_TO_15(a,b,c,d,e,f,g,h); ROUND256_0_TO_15(h,a,b,c,d,e,f,g); ROUND256_0_TO_15(g,h,a,b,c,d,e,f); ROUND256_0_TO_15(f,g,h,a,b,c,d,e); ROUND256_0_TO_15(e,f,g,h,a,b,c,d); ROUND256_0_TO_15(d,e,f,g,h,a,b,c); ROUND256_0_TO_15(c,d,e,f,g,h,a,b); ROUND256_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a,b,c,d,e,f,g,h); ROUND256(h,a,b,c,d,e,f,g); ROUND256(g,h,a,b,c,d,e,f); ROUND256(f,g,h,a,b,c,d,e); ROUND256(e,f,g,h,a,b,c,d); ROUND256(d,e,f,g,h,a,b,c); ROUND256(c,d,e,f,g,h,a,b); ROUND256(b,c,d,e,f,g,h,a); } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { sha2_word32 a, b, c, d, e, f, g, h, s0, s1; sha2_word32 T1, T2, *W256; int j; W256 = (sha2_word32*)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { #ifndef WORDS_BIGENDIAN /* Copy data while converting to host byte order */ REVERSE32(*data++,W256[j]); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; #else /* Apply the SHA-256 compression function to update a..h with copy */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); #endif T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j+1)&0x0f]; s0 = sigma0_256(s0); s1 = W256[(j+14)&0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ assert(context != NULL && data != NULL); usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); context->bitcount += freespace << 3; len -= freespace; data += freespace; SHA256_Transform(context, (sha2_word32*)context->buffer); } else { /* The buffer is not yet full */ MEMCPY_BCOPY(&context->buffer[usedspace], data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ SHA256_Transform(context, (const sha2_word32*)data); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; } void SHA256_Finish(SHA256_CTX* context, sha2_byte digest[]) { sha2_word32 *d = (sha2_word32*)digest; unsigned int usedspace; /* Sanity check: */ assert(context != NULL); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (sha2_byte*)0) { usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; #ifndef WORDS_BIGENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount,context->bitcount); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA256_BLOCK_LENGTH) { MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ SHA256_Transform(context, (sha2_word32*)context->buffer); /* And set-up for the last transform: */ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); } } else { /* Set-up for the last transform: */ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; /* Final transform: */ SHA256_Transform(context, (sha2_word32*)context->buffer); #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE32(context->state[j],context->state[j]); *d++ = context->state[j]; } } #else MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH); #endif } /* Clean up state data: */ MEMSET_BZERO(context, sizeof(SHA256_CTX)); usedspace = 0; } /*** SHA-512: *********************************************************/ void SHA512_Init(SHA512_CTX* context) { if (context == (SHA512_CTX*)0) { return; } MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-512 round macros: */ #ifndef WORDS_BIGENDIAN #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ REVERSE64(*data++, W512[j]); \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ K512[j] + W512[j]; \ (d) += T1, \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ j++ #else #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ K512[j] + (W512[j] = *data++); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ j++ #endif #define ROUND512(a,b,c,d,e,f,g,h) \ s0 = W512[(j+1)&0x0f]; \ s0 = sigma0_512(s0); \ s1 = W512[(j+14)&0x0f]; \ s1 = sigma1_512(s1); \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ j++ void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { sha2_word64 a, b, c, d, e, f, g, h, s0, s1; sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { ROUND512_0_TO_15(a,b,c,d,e,f,g,h); ROUND512_0_TO_15(h,a,b,c,d,e,f,g); ROUND512_0_TO_15(g,h,a,b,c,d,e,f); ROUND512_0_TO_15(f,g,h,a,b,c,d,e); ROUND512_0_TO_15(e,f,g,h,a,b,c,d); ROUND512_0_TO_15(d,e,f,g,h,a,b,c); ROUND512_0_TO_15(c,d,e,f,g,h,a,b); ROUND512_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds up to 79: */ do { ROUND512(a,b,c,d,e,f,g,h); ROUND512(h,a,b,c,d,e,f,g); ROUND512(g,h,a,b,c,d,e,f); ROUND512(f,g,h,a,b,c,d,e); ROUND512(e,f,g,h,a,b,c,d); ROUND512(d,e,f,g,h,a,b,c); ROUND512(c,d,e,f,g,h,a,b); ROUND512(b,c,d,e,f,g,h,a); } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { sha2_word64 a, b, c, d, e, f, g, h, s0, s1; sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { #ifndef WORDS_BIGENDIAN /* Convert TO host byte order */ REVERSE64(*data++, W512[j]); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; #else /* Apply the SHA-512 compression function to update a..h with copy */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); #endif T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W512[(j+1)&0x0f]; s0 = sigma0_512(s0); s1 = W512[(j+14)&0x0f]; s1 = sigma1_512(s1); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ assert(context != NULL && data != NULL); usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA512_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); ADDINC128(context->bitcount, freespace << 3); len -= freespace; data += freespace; SHA512_Transform(context, (const sha2_word64*)context->buffer); } else { /* The buffer is not yet full */ MEMCPY_BCOPY(&context->buffer[usedspace], data, len); ADDINC128(context->bitcount, len << 3); /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA512_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ SHA512_Transform(context, (const sha2_word64*)data); ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); len -= SHA512_BLOCK_LENGTH; data += SHA512_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY(context->buffer, data, len); ADDINC128(context->bitcount, len << 3); } /* Clean up: */ usedspace = freespace = 0; } void SHA512_Last(SHA512_CTX* context) { unsigned int usedspace; usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; #ifndef WORDS_BIGENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount[0],context->bitcount[0]); REVERSE64(context->bitcount[1],context->bitcount[1]); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA512_BLOCK_LENGTH) { MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ SHA512_Transform(context, (const sha2_word64*)context->buffer); /* And set-up for the last transform: */ MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2); } } else { /* Prepare for final transform: */ MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Store the length of input data (in bits): */ *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0]; /* Final transform: */ SHA512_Transform(context, (const sha2_word64*)context->buffer); } void SHA512_Finish(SHA512_CTX* context, sha2_byte digest[]) { sha2_word64 *d = (sha2_word64*)digest; /* Sanity check: */ assert(context != NULL); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (sha2_byte*)0) { SHA512_Last(context); /* Save the hash data for output: */ #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE64(context->state[j],context->state[j]); *d++ = context->state[j]; } } #else MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH); #endif } /* Zero out state data */ MEMSET_BZERO(context, sizeof(SHA512_CTX)); } /*** SHA-384: *********************************************************/ void SHA384_Init(SHA384_CTX* context) { if (context == (SHA384_CTX*)0) { return; } MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { SHA512_Update((SHA512_CTX*)context, data, len); } void SHA384_Finish(SHA384_CTX* context, sha2_byte digest[]) { sha2_word64 *d = (sha2_word64*)digest; /* Sanity check: */ assert(context != NULL); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (sha2_byte*)0) { SHA512_Last((SHA512_CTX*)context); /* Save the hash data for output: */ #ifndef WORDS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 6; j++) { REVERSE64(context->state[j],context->state[j]); *d++ = context->state[j]; } } #else MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH); #endif } /* Zero out state data */ MEMSET_BZERO(context, sizeof(SHA384_CTX)); }