Sha256: 3afb3658f45dd4d304395efd994a7dafabe7cdd0c26604362bf800521dca18ee
Contents?: true
Size: 1.86 KB
Versions: 6
Compression:
Stored size: 1.86 KB
Contents
# Added by John O. Woods, SciRuby project. # Optimized by Claudio Bustos module Distribution module Hypergeometric module Ruby_ class << self def bc(n,k) Math.binomial_coefficient(n,k) end # Hypergeometric probability density function # # Probability p(+k+, +m+, +n+, +total+) of drawing sets of size +m+ and +n+ with an intersection of size +k+ # from a total pool of size +total+, without replacement. # # ==References # * http://www.gnu.org/software/gsl/manual/html_node/The-Hypergeometric-Distribution.html # * http://en.wikipedia.org/wiki/Hypergeometric_distribution def pdf(k, m, n, total) min_m_n=m<n ? m : n max_t=[0,m+n-total].max return 0 if k>min_m_n or k<max_t (bc(m,k) * bc(total-m,n-k)).quo(bc(total,n)) end def pdf_with_den(k,m,n,total,den) (bc(m,k) * bc(total-m,n-k)).quo(den) end # p-value: def p_value(pr, m, n, total) ac=0 den=bc(total,n) (0..total).each do |i| ac+=pdf_with_den(i,m,n,total,den) return i if ac>=pr end end # Cumulative distribution function. # The probability of obtain, from a sample of # size +n+, +k+ or less elements # in a population size +total+ with +m+ interesting elements. # # Slow, but secure def cdf(k, m, n, total) raise "k>m" if k>m raise "k>n" if k>n # Store the den den=bc(total,n) (0..k).collect { |ki| pdf_with_den(ki,m,n,total,den) }.inject { |sum,v| sum+v} end alias :exact_pdf :pdf alias :exact_p_value :p_value alias :exact_cdf :cdf end end end end
Version data entries
6 entries across 6 versions & 1 rubygems