Sha256: 3a71b022b98a5ae7cbf6b1b53f2893f76a0b277d5f248485d92994d416e25f42
Contents?: true
Size: 1.52 KB
Versions: 5
Compression:
Stored size: 1.52 KB
Contents
require 'spec_helper' describe Danica::Function::Gauss do let(:variables) do { x: :x, average: :u, variance_root: { latex: '\theta', gnu: :v } } end subject { described_class::Gauss.new(variables) } it_behaves_like 'an object that respond to basic_methods' describe '#to_tex' do context 'when creating the spatial operator for constantly accelerated movement' do let(:expected) { '\frac{1}{\theta \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{\left(x -u\right)^{2}}{2 \cdot \theta^{2}}}' } it 'return the latex format CAM' do expect(subject.to_tex).to eq(expected) end end end describe '#to_gnu' do context 'when creating the spatial operator for constantly accelerated movement' do let(:expected) { '(1)/(v * sqrt(2 * pi)) * exp(-((x -u)**(2))/(2 * v**(2)))' } it 'return the gnu format CAM' do expect(subject.to_gnu).to eq(expected) end end end context 'when not passing variables' do subject { described_class::Gauss.new } describe '#to_tex' do let(:expected) { '\frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{\left(x -\mu\right)^{2}}{2 \cdot \sigma^{2}}}' } it 'rely on default variables definition' do expect(subject.to_tex).to eq(expected) end end describe '#to_gnu' do let(:expected) { '(1)/(v * sqrt(2 * pi)) * exp(-((x -u)**(2))/(2 * v**(2)))' } it 'rely on default variables definition' do expect(subject.to_gnu).to eq(expected) end end end end
Version data entries
5 entries across 5 versions & 1 rubygems