/* * Copyright 2016-2017 Uber Technologies, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** @file faceijk.c * @brief Functions for working with icosahedral face-centered hex IJK * coordinate systems. */ #include "faceijk.h" #include #include #include #include #include #include "constants.h" #include "coordijk.h" #include "geoCoord.h" #include "h3Index.h" #include "vec3d.h" /** square root of 7 */ #define M_SQRT7 2.6457513110645905905016157536392604257102L /** @brief icosahedron face centers in lat/lon radians */ const GeoCoord faceCenterGeo[NUM_ICOSA_FACES] = { {0.803582649718989942, 1.248397419617396099}, // face 0 {1.307747883455638156, 2.536945009877921159}, // face 1 {1.054751253523952054, -1.347517358900396623}, // face 2 {0.600191595538186799, -0.450603909469755746}, // face 3 {0.491715428198773866, 0.401988202911306943}, // face 4 {0.172745327415618701, 1.678146885280433686}, // face 5 {0.605929321571350690, 2.953923329812411617}, // face 6 {0.427370518328979641, -1.888876200336285401}, // face 7 {-0.079066118549212831, -0.733429513380867741}, // face 8 {-0.230961644455383637, 0.506495587332349035}, // face 9 {0.079066118549212831, 2.408163140208925497}, // face 10 {0.230961644455383637, -2.635097066257444203}, // face 11 {-0.172745327415618701, -1.463445768309359553}, // face 12 {-0.605929321571350690, -0.187669323777381622}, // face 13 {-0.427370518328979641, 1.252716453253507838}, // face 14 {-0.600191595538186799, 2.690988744120037492}, // face 15 {-0.491715428198773866, -2.739604450678486295}, // face 16 {-0.803582649718989942, -1.893195233972397139}, // face 17 {-1.307747883455638156, -0.604647643711872080}, // face 18 {-1.054751253523952054, 1.794075294689396615}, // face 19 }; /** @brief icosahedron face centers in x/y/z on the unit sphere */ static const Vec3d faceCenterPoint[NUM_ICOSA_FACES] = { {0.2199307791404606, 0.6583691780274996, 0.7198475378926182}, // face 0 {-0.2139234834501421, 0.1478171829550703, 0.9656017935214205}, // face 1 {0.1092625278784797, -0.4811951572873210, 0.8697775121287253}, // face 2 {0.7428567301586791, -0.3593941678278028, 0.5648005936517033}, // face 3 {0.8112534709140969, 0.3448953237639384, 0.4721387736413930}, // face 4 {-0.1055498149613921, 0.9794457296411413, 0.1718874610009365}, // face 5 {-0.8075407579970092, 0.1533552485898818, 0.5695261994882688}, // face 6 {-0.2846148069787907, -0.8644080972654206, 0.4144792552473539}, // face 7 {0.7405621473854482, -0.6673299564565524, -0.0789837646326737}, // face 8 {0.8512303986474293, 0.4722343788582681, -0.2289137388687808}, // face 9 {-0.7405621473854481, 0.6673299564565524, 0.0789837646326737}, // face 10 {-0.8512303986474292, -0.4722343788582682, 0.2289137388687808}, // face 11 {0.1055498149613919, -0.9794457296411413, -0.1718874610009365}, // face 12 {0.8075407579970092, -0.1533552485898819, -0.5695261994882688}, // face 13 {0.2846148069787908, 0.8644080972654204, -0.4144792552473539}, // face 14 {-0.7428567301586791, 0.3593941678278027, -0.5648005936517033}, // face 15 {-0.8112534709140971, -0.3448953237639382, -0.4721387736413930}, // face 16 {-0.2199307791404607, -0.6583691780274996, -0.7198475378926182}, // face 17 {0.2139234834501420, -0.1478171829550704, -0.9656017935214205}, // face 18 {-0.1092625278784796, 0.4811951572873210, -0.8697775121287253}, // face 19 }; /** @brief icosahedron face ijk axes as azimuth in radians from face center to * vertex 0/1/2 respectively */ static const double faceAxesAzRadsCII[NUM_ICOSA_FACES][3] = { {5.619958268523939882, 3.525563166130744542, 1.431168063737548730}, // face 0 {5.760339081714187279, 3.665943979320991689, 1.571548876927796127}, // face 1 {0.780213654393430055, 4.969003859179821079, 2.874608756786625655}, // face 2 {0.430469363979999913, 4.619259568766391033, 2.524864466373195467}, // face 3 {6.130269123335111400, 4.035874020941915804, 1.941478918548720291}, // face 4 {2.692877706530642877, 0.598482604137447119, 4.787272808923838195}, // face 5 {2.982963003477243874, 0.888567901084048369, 5.077358105870439581}, // face 6 {3.532912002790141181, 1.438516900396945656, 5.627307105183336758}, // face 7 {3.494305004259568154, 1.399909901866372864, 5.588700106652763840}, // face 8 {3.003214169499538391, 0.908819067106342928, 5.097609271892733906}, // face 9 {5.930472956509811562, 3.836077854116615875, 1.741682751723420374}, // face 10 {0.138378484090254847, 4.327168688876645809, 2.232773586483450311}, // face 11 {0.448714947059150361, 4.637505151845541521, 2.543110049452346120}, // face 12 {0.158629650112549365, 4.347419854898940135, 2.253024752505744869}, // face 13 {5.891865957979238535, 3.797470855586042958, 1.703075753192847583}, // face 14 {2.711123289609793325, 0.616728187216597771, 4.805518392002988683}, // face 15 {3.294508837434268316, 1.200113735041072948, 5.388903939827463911}, // face 16 {3.804819692245439833, 1.710424589852244509, 5.899214794638635174}, // face 17 {3.664438879055192436, 1.570043776661997111, 5.758833981448388027}, // face 18 {2.361378999196363184, 0.266983896803167583, 4.455774101589558636}, // face 19 }; /** @brief Definition of which faces neighbor each other. */ static const FaceOrientIJK faceNeighbors[NUM_ICOSA_FACES][4] = { { // face 0 {0, {0, 0, 0}, 0}, // central face {4, {2, 0, 2}, 1}, // ij quadrant {1, {2, 2, 0}, 5}, // ki quadrant {5, {0, 2, 2}, 3} // jk quadrant }, { // face 1 {1, {0, 0, 0}, 0}, // central face {0, {2, 0, 2}, 1}, // ij quadrant {2, {2, 2, 0}, 5}, // ki quadrant {6, {0, 2, 2}, 3} // jk quadrant }, { // face 2 {2, {0, 0, 0}, 0}, // central face {1, {2, 0, 2}, 1}, // ij quadrant {3, {2, 2, 0}, 5}, // ki quadrant {7, {0, 2, 2}, 3} // jk quadrant }, { // face 3 {3, {0, 0, 0}, 0}, // central face {2, {2, 0, 2}, 1}, // ij quadrant {4, {2, 2, 0}, 5}, // ki quadrant {8, {0, 2, 2}, 3} // jk quadrant }, { // face 4 {4, {0, 0, 0}, 0}, // central face {3, {2, 0, 2}, 1}, // ij quadrant {0, {2, 2, 0}, 5}, // ki quadrant {9, {0, 2, 2}, 3} // jk quadrant }, { // face 5 {5, {0, 0, 0}, 0}, // central face {10, {2, 2, 0}, 3}, // ij quadrant {14, {2, 0, 2}, 3}, // ki quadrant {0, {0, 2, 2}, 3} // jk quadrant }, { // face 6 {6, {0, 0, 0}, 0}, // central face {11, {2, 2, 0}, 3}, // ij quadrant {10, {2, 0, 2}, 3}, // ki quadrant {1, {0, 2, 2}, 3} // jk quadrant }, { // face 7 {7, {0, 0, 0}, 0}, // central face {12, {2, 2, 0}, 3}, // ij quadrant {11, {2, 0, 2}, 3}, // ki quadrant {2, {0, 2, 2}, 3} // jk quadrant }, { // face 8 {8, {0, 0, 0}, 0}, // central face {13, {2, 2, 0}, 3}, // ij quadrant {12, {2, 0, 2}, 3}, // ki quadrant {3, {0, 2, 2}, 3} // jk quadrant }, { // face 9 {9, {0, 0, 0}, 0}, // central face {14, {2, 2, 0}, 3}, // ij quadrant {13, {2, 0, 2}, 3}, // ki quadrant {4, {0, 2, 2}, 3} // jk quadrant }, { // face 10 {10, {0, 0, 0}, 0}, // central face {5, {2, 2, 0}, 3}, // ij quadrant {6, {2, 0, 2}, 3}, // ki quadrant {15, {0, 2, 2}, 3} // jk quadrant }, { // face 11 {11, {0, 0, 0}, 0}, // central face {6, {2, 2, 0}, 3}, // ij quadrant {7, {2, 0, 2}, 3}, // ki quadrant {16, {0, 2, 2}, 3} // jk quadrant }, { // face 12 {12, {0, 0, 0}, 0}, // central face {7, {2, 2, 0}, 3}, // ij quadrant {8, {2, 0, 2}, 3}, // ki quadrant {17, {0, 2, 2}, 3} // jk quadrant }, { // face 13 {13, {0, 0, 0}, 0}, // central face {8, {2, 2, 0}, 3}, // ij quadrant {9, {2, 0, 2}, 3}, // ki quadrant {18, {0, 2, 2}, 3} // jk quadrant }, { // face 14 {14, {0, 0, 0}, 0}, // central face {9, {2, 2, 0}, 3}, // ij quadrant {5, {2, 0, 2}, 3}, // ki quadrant {19, {0, 2, 2}, 3} // jk quadrant }, { // face 15 {15, {0, 0, 0}, 0}, // central face {16, {2, 0, 2}, 1}, // ij quadrant {19, {2, 2, 0}, 5}, // ki quadrant {10, {0, 2, 2}, 3} // jk quadrant }, { // face 16 {16, {0, 0, 0}, 0}, // central face {17, {2, 0, 2}, 1}, // ij quadrant {15, {2, 2, 0}, 5}, // ki quadrant {11, {0, 2, 2}, 3} // jk quadrant }, { // face 17 {17, {0, 0, 0}, 0}, // central face {18, {2, 0, 2}, 1}, // ij quadrant {16, {2, 2, 0}, 5}, // ki quadrant {12, {0, 2, 2}, 3} // jk quadrant }, { // face 18 {18, {0, 0, 0}, 0}, // central face {19, {2, 0, 2}, 1}, // ij quadrant {17, {2, 2, 0}, 5}, // ki quadrant {13, {0, 2, 2}, 3} // jk quadrant }, { // face 19 {19, {0, 0, 0}, 0}, // central face {15, {2, 0, 2}, 1}, // ij quadrant {18, {2, 2, 0}, 5}, // ki quadrant {14, {0, 2, 2}, 3} // jk quadrant }}; /** @brief direction from the origin face to the destination face, relative to * the origin face's coordinate system, or -1 if not adjacent. */ static const int adjacentFaceDir[NUM_ICOSA_FACES][NUM_ICOSA_FACES] = { {0, KI, -1, -1, IJ, JK, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 0 {IJ, 0, KI, -1, -1, -1, JK, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 1 {-1, IJ, 0, KI, -1, -1, -1, JK, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 2 {-1, -1, IJ, 0, KI, -1, -1, -1, JK, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 3 {KI, -1, -1, IJ, 0, -1, -1, -1, -1, JK, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 4 {JK, -1, -1, -1, -1, 0, -1, -1, -1, -1, IJ, -1, -1, -1, KI, -1, -1, -1, -1, -1}, // face 5 {-1, JK, -1, -1, -1, -1, 0, -1, -1, -1, KI, IJ, -1, -1, -1, -1, -1, -1, -1, -1}, // face 6 {-1, -1, JK, -1, -1, -1, -1, 0, -1, -1, -1, KI, IJ, -1, -1, -1, -1, -1, -1, -1}, // face 7 {-1, -1, -1, JK, -1, -1, -1, -1, 0, -1, -1, -1, KI, IJ, -1, -1, -1, -1, -1, -1}, // face 8 {-1, -1, -1, -1, JK, -1, -1, -1, -1, 0, -1, -1, -1, KI, IJ, -1, -1, -1, -1, -1}, // face 9 {-1, -1, -1, -1, -1, IJ, KI, -1, -1, -1, 0, -1, -1, -1, -1, JK, -1, -1, -1, -1}, // face 10 {-1, -1, -1, -1, -1, -1, IJ, KI, -1, -1, -1, 0, -1, -1, -1, -1, JK, -1, -1, -1}, // face 11 {-1, -1, -1, -1, -1, -1, -1, IJ, KI, -1, -1, -1, 0, -1, -1, -1, -1, JK, -1, -1}, // face 12 {-1, -1, -1, -1, -1, -1, -1, -1, IJ, KI, -1, -1, -1, 0, -1, -1, -1, -1, JK, -1}, // face 13 {-1, -1, -1, -1, -1, KI, -1, -1, -1, IJ, -1, -1, -1, -1, 0, -1, -1, -1, -1, JK}, // face 14 {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, JK, -1, -1, -1, -1, 0, IJ, -1, -1, KI}, // face 15 {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, JK, -1, -1, -1, KI, 0, IJ, -1, -1}, // face 16 {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, JK, -1, -1, -1, KI, 0, IJ, -1}, // face 17 {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, JK, -1, -1, -1, KI, 0, IJ}, // face 18 {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, JK, IJ, -1, -1, KI, 0} // face 19 }; /** @brief overage distance table */ static const int maxDimByCIIres[] = { 2, // res 0 -1, // res 1 14, // res 2 -1, // res 3 98, // res 4 -1, // res 5 686, // res 6 -1, // res 7 4802, // res 8 -1, // res 9 33614, // res 10 -1, // res 11 235298, // res 12 -1, // res 13 1647086, // res 14 -1, // res 15 11529602 // res 16 }; /** @brief unit scale distance table */ static const int unitScaleByCIIres[] = { 1, // res 0 -1, // res 1 7, // res 2 -1, // res 3 49, // res 4 -1, // res 5 343, // res 6 -1, // res 7 2401, // res 8 -1, // res 9 16807, // res 10 -1, // res 11 117649, // res 12 -1, // res 13 823543, // res 14 -1, // res 15 5764801 // res 16 }; /** * Encodes a coordinate on the sphere to the FaceIJK address of the containing * cell at the specified resolution. * * @param g The spherical coordinates to encode. * @param res The desired H3 resolution for the encoding. * @param h The FaceIJK address of the containing cell at resolution res. */ void _geoToFaceIjk(const GeoCoord* g, int res, FaceIJK* h) { // first convert to hex2d Vec2d v; _geoToHex2d(g, res, &h->face, &v); // then convert to ijk+ _hex2dToCoordIJK(&v, &h->coord); } /** * Encodes a coordinate on the sphere to the corresponding icosahedral face and * containing 2D hex coordinates relative to that face center. * * @param g The spherical coordinates to encode. * @param res The desired H3 resolution for the encoding. * @param face The icosahedral face containing the spherical coordinates. * @param v The 2D hex coordinates of the cell containing the point. */ void _geoToHex2d(const GeoCoord* g, int res, int* face, Vec2d* v) { Vec3d v3d; _geoToVec3d(g, &v3d); // determine the icosahedron face *face = 0; double sqd = _pointSquareDist(&faceCenterPoint[0], &v3d); for (int f = 1; f < NUM_ICOSA_FACES; f++) { double sqdT = _pointSquareDist(&faceCenterPoint[f], &v3d); if (sqdT < sqd) { *face = f; sqd = sqdT; } } // cos(r) = 1 - 2 * sin^2(r/2) = 1 - 2 * (sqd / 4) = 1 - sqd/2 double r = acos(1 - sqd / 2); if (r < EPSILON) { v->x = v->y = 0.0L; return; } // now have face and r, now find CCW theta from CII i-axis double theta = _posAngleRads(faceAxesAzRadsCII[*face][0] - _posAngleRads(_geoAzimuthRads(&faceCenterGeo[*face], g))); // adjust theta for Class III (odd resolutions) if (isResClassIII(res)) theta = _posAngleRads(theta - M_AP7_ROT_RADS); // perform gnomonic scaling of r r = tan(r); // scale for current resolution length u r /= RES0_U_GNOMONIC; for (int i = 0; i < res; i++) r *= M_SQRT7; // we now have (r, theta) in hex2d with theta ccw from x-axes // convert to local x,y v->x = r * cos(theta); v->y = r * sin(theta); } /** * Determines the center point in spherical coordinates of a cell given by 2D * hex coordinates on a particular icosahedral face. * * @param v The 2D hex coordinates of the cell. * @param face The icosahedral face upon which the 2D hex coordinate system is * centered. * @param res The H3 resolution of the cell. * @param substrate Indicates whether or not this grid is actually a substrate * grid relative to the specified resolution. * @param g The spherical coordinates of the cell center point. */ void _hex2dToGeo(const Vec2d* v, int face, int res, int substrate, GeoCoord* g) { // calculate (r, theta) in hex2d double r = _v2dMag(v); if (r < EPSILON) { *g = faceCenterGeo[face]; return; } double theta = atan2(v->y, v->x); // scale for current resolution length u for (int i = 0; i < res; i++) r /= M_SQRT7; // scale accordingly if this is a substrate grid if (substrate) { r /= 3.0; if (isResClassIII(res)) r /= M_SQRT7; } r *= RES0_U_GNOMONIC; // perform inverse gnomonic scaling of r r = atan(r); // adjust theta for Class III // if a substrate grid, then it's already been adjusted for Class III if (!substrate && isResClassIII(res)) theta = _posAngleRads(theta + M_AP7_ROT_RADS); // find theta as an azimuth theta = _posAngleRads(faceAxesAzRadsCII[face][0] - theta); // now find the point at (r,theta) from the face center _geoAzDistanceRads(&faceCenterGeo[face], theta, r, g); } /** * Determines the center point in spherical coordinates of a cell given by * a FaceIJK address at a specified resolution. * * @param h The FaceIJK address of the cell. * @param res The H3 resolution of the cell. * @param g The spherical coordinates of the cell center point. */ void _faceIjkToGeo(const FaceIJK* h, int res, GeoCoord* g) { Vec2d v; _ijkToHex2d(&h->coord, &v); _hex2dToGeo(&v, h->face, res, 0, g); } /** * Generates the cell boundary in spherical coordinates for a pentagonal cell * given by a FaceIJK address at a specified resolution. * * @param h The FaceIJK address of the pentagonal cell. * @param res The H3 resolution of the cell. * @param g The spherical coordinates of the cell boundary. */ void _faceIjkPentToGeoBoundary(const FaceIJK* h, int res, GeoBoundary* g) { // the vertexes of an origin-centered pentagon in a Class II resolution on a // substrate grid with aperture sequence 33r. The aperture 3 gets us the // vertices, and the 3r gets us back to Class II. // vertices listed ccw from the i-axes CoordIJK vertsCII[NUM_PENT_VERTS] = { {2, 1, 0}, // 0 {1, 2, 0}, // 1 {0, 2, 1}, // 2 {0, 1, 2}, // 3 {1, 0, 2}, // 4 }; // the vertexes of an origin-centered pentagon in a Class III resolution on // a substrate grid with aperture sequence 33r7r. The aperture 3 gets us the // vertices, and the 3r7r gets us to Class II. vertices listed ccw from the // i-axes CoordIJK vertsCIII[NUM_PENT_VERTS] = { {5, 4, 0}, // 0 {1, 5, 0}, // 1 {0, 5, 4}, // 2 {0, 1, 5}, // 3 {4, 0, 5}, // 4 }; // get the correct set of substrate vertices for this resolution CoordIJK* verts; if (isResClassIII(res)) verts = vertsCIII; else verts = vertsCII; // adjust the center point to be in an aperture 33r substrate grid // these should be composed for speed FaceIJK centerIJK = *h; _downAp3(¢erIJK.coord); _downAp3r(¢erIJK.coord); // if res is Class III we need to add a cw aperture 7 to get to // icosahedral Class II int adjRes = res; if (isResClassIII(res)) { _downAp7r(¢erIJK.coord); adjRes++; } // The center point is now in the same substrate grid as the origin // cell vertices. Add the center point substate coordinates // to each vertex to translate the vertices to that cell. FaceIJK fijkVerts[NUM_PENT_VERTS]; for (int v = 0; v < NUM_PENT_VERTS; v++) { fijkVerts[v].face = centerIJK.face; _ijkAdd(¢erIJK.coord, &verts[v], &fijkVerts[v].coord); _ijkNormalize(&fijkVerts[v].coord); } // convert each vertex to lat/lon // adjust the face of each vertex as appropriate and introduce // edge-crossing vertices as needed g->numVerts = 0; FaceIJK lastFijk; for (int vert = 0; vert < NUM_PENT_VERTS + 1; vert++) { int v = vert % NUM_PENT_VERTS; FaceIJK fijk = fijkVerts[v]; int pentLeading4 = 0; int overage = _adjustOverageClassII(&fijk, adjRes, pentLeading4, 1); if (overage == 2) // in a different triangle { while (1) { overage = _adjustOverageClassII(&fijk, adjRes, pentLeading4, 1); if (overage != 2) // not in a different triangle break; } } // all Class III pentagon edges cross icosa edges // note that Class II pentagons have vertices on the edge, // not edge intersections if (isResClassIII(res) && vert > 0) { // find hex2d of the two vertexes on the last face FaceIJK tmpFijk = fijk; Vec2d orig2d0; _ijkToHex2d(&lastFijk.coord, &orig2d0); int currentToLastDir = adjacentFaceDir[tmpFijk.face][lastFijk.face]; const FaceOrientIJK* fijkOrient = &faceNeighbors[tmpFijk.face][currentToLastDir]; tmpFijk.face = fijkOrient->face; CoordIJK* ijk = &tmpFijk.coord; // rotate and translate for adjacent face for (int i = 0; i < fijkOrient->ccwRot60; i++) _ijkRotate60ccw(ijk); CoordIJK transVec = fijkOrient->translate; _ijkScale(&transVec, unitScaleByCIIres[adjRes] * 3); _ijkAdd(ijk, &transVec, ijk); _ijkNormalize(ijk); Vec2d orig2d1; _ijkToHex2d(ijk, &orig2d1); // find the appropriate icosa face edge vertexes int maxDim = maxDimByCIIres[adjRes]; Vec2d v0 = {3.0 * maxDim, 0.0}; Vec2d v1 = {-1.5 * maxDim, 3.0 * M_SQRT3_2 * maxDim}; Vec2d v2 = {-1.5 * maxDim, -3.0 * M_SQRT3_2 * maxDim}; Vec2d* edge0; Vec2d* edge1; switch (adjacentFaceDir[tmpFijk.face][fijk.face]) { case IJ: edge0 = &v0; edge1 = &v1; break; case JK: edge0 = &v1; edge1 = &v2; break; case KI: default: assert(adjacentFaceDir[tmpFijk.face][fijk.face] == KI); edge0 = &v2; edge1 = &v0; break; } // find the intersection and add the lat/lon point to the result Vec2d inter; _v2dIntersect(&orig2d0, &orig2d1, edge0, edge1, &inter); _hex2dToGeo(&inter, tmpFijk.face, adjRes, 1, &g->verts[g->numVerts]); g->numVerts++; } // convert vertex to lat/lon and add to the result // vert == NUM_PENT_VERTS is only used to test for possible intersection // on last edge if (vert < NUM_PENT_VERTS) { Vec2d vec; _ijkToHex2d(&fijk.coord, &vec); _hex2dToGeo(&vec, fijk.face, adjRes, 1, &g->verts[g->numVerts]); g->numVerts++; } lastFijk = fijk; } } /** * Generates the cell boundary in spherical coordinates for a cell given by a * FaceIJK address at a specified resolution. * * @param h The FaceIJK address of the cell. * @param res The H3 resolution of the cell. * @param isPentagon Whether or not the cell is a pentagon. * @param g The spherical coordinates of the cell boundary. */ void _faceIjkToGeoBoundary(const FaceIJK* h, int res, int isPentagon, GeoBoundary* g) { if (isPentagon) { _faceIjkPentToGeoBoundary(h, res, g); return; } // the vertexes of an origin-centered cell in a Class II resolution on a // substrate grid with aperture sequence 33r. The aperture 3 gets us the // vertices, and the 3r gets us back to Class II. // vertices listed ccw from the i-axes CoordIJK vertsCII[NUM_HEX_VERTS] = { {2, 1, 0}, // 0 {1, 2, 0}, // 1 {0, 2, 1}, // 2 {0, 1, 2}, // 3 {1, 0, 2}, // 4 {2, 0, 1} // 5 }; // the vertexes of an origin-centered cell in a Class III resolution on a // substrate grid with aperture sequence 33r7r. The aperture 3 gets us the // vertices, and the 3r7r gets us to Class II. // vertices listed ccw from the i-axes CoordIJK vertsCIII[NUM_HEX_VERTS] = { {5, 4, 0}, // 0 {1, 5, 0}, // 1 {0, 5, 4}, // 2 {0, 1, 5}, // 3 {4, 0, 5}, // 4 {5, 0, 1} // 5 }; // get the correct set of substrate vertices for this resolution CoordIJK* verts; if (isResClassIII(res)) verts = vertsCIII; else verts = vertsCII; // adjust the center point to be in an aperture 33r substrate grid // these should be composed for speed FaceIJK centerIJK = *h; _downAp3(¢erIJK.coord); _downAp3r(¢erIJK.coord); // if res is Class III we need to add a cw aperture 7 to get to // icosahedral Class II int adjRes = res; if (isResClassIII(res)) { _downAp7r(¢erIJK.coord); adjRes++; } // The center point is now in the same substrate grid as the origin // cell vertices. Add the center point substate coordinates // to each vertex to translate the vertices to that cell. FaceIJK fijkVerts[NUM_HEX_VERTS]; for (int v = 0; v < NUM_HEX_VERTS; v++) { fijkVerts[v].face = centerIJK.face; _ijkAdd(¢erIJK.coord, &verts[v], &fijkVerts[v].coord); _ijkNormalize(&fijkVerts[v].coord); } // convert each vertex to lat/lon // adjust the face of each vertex as appropriate and introduce // edge-crossing vertices as needed g->numVerts = 0; int lastFace = -1; int lastOverage = 0; // 0: none; 1: edge; 2: overage for (int vert = 0; vert < NUM_HEX_VERTS + 1; vert++) { int v = vert % NUM_HEX_VERTS; FaceIJK fijk = fijkVerts[v]; int pentLeading4 = 0; int overage = _adjustOverageClassII(&fijk, adjRes, pentLeading4, 1); /* Check for edge-crossing. Each face of the underlying icosahedron is a different projection plane. So if an edge of the hexagon crosses an icosahedron edge, an additional vertex must be introduced at that intersection point. Then each half of the cell edge can be projected to geographic coordinates using the appropriate icosahedron face projection. Note that Class II cell edges have vertices on the face edge, with no edge line intersections. */ if (isResClassIII(res) && vert > 0 && fijk.face != lastFace && lastOverage != 1) { // find hex2d of the two vertexes on original face int lastV = (v + 5) % NUM_HEX_VERTS; Vec2d orig2d0; _ijkToHex2d(&fijkVerts[lastV].coord, &orig2d0); Vec2d orig2d1; _ijkToHex2d(&fijkVerts[v].coord, &orig2d1); // find the appropriate icosa face edge vertexes int maxDim = maxDimByCIIres[adjRes]; Vec2d v0 = {3.0 * maxDim, 0.0}; Vec2d v1 = {-1.5 * maxDim, 3.0 * M_SQRT3_2 * maxDim}; Vec2d v2 = {-1.5 * maxDim, -3.0 * M_SQRT3_2 * maxDim}; int face2 = ((lastFace == centerIJK.face) ? fijk.face : lastFace); Vec2d* edge0; Vec2d* edge1; switch (adjacentFaceDir[centerIJK.face][face2]) { case IJ: edge0 = &v0; edge1 = &v1; break; case JK: edge0 = &v1; edge1 = &v2; break; case KI: default: assert(adjacentFaceDir[centerIJK.face][face2] == KI); edge0 = &v2; edge1 = &v0; break; } // find the intersection and add the lat/lon point to the result Vec2d inter; _v2dIntersect(&orig2d0, &orig2d1, edge0, edge1, &inter); /* If a point of intersection occurs at a hexagon vertex, then each adjacent hexagon edge will lie completely on a single icosahedron face, and no additional vertex is required. */ bool isIntersectionAtVertex = _v2dEquals(&orig2d0, &inter) || _v2dEquals(&orig2d1, &inter); if (!isIntersectionAtVertex) { _hex2dToGeo(&inter, centerIJK.face, adjRes, 1, &g->verts[g->numVerts]); g->numVerts++; } } // convert vertex to lat/lon and add to the result // vert == NUM_HEX_VERTS is only used to test for possible intersection // on last edge if (vert < NUM_HEX_VERTS) { Vec2d vec; _ijkToHex2d(&fijk.coord, &vec); _hex2dToGeo(&vec, fijk.face, adjRes, 1, &g->verts[g->numVerts]); g->numVerts++; } lastFace = fijk.face; lastOverage = overage; } } /** * Adjusts a FaceIJK address in place so that the resulting cell address is * relative to the correct icosahedral face. * * @param fijk The FaceIJK address of the cell. * @param res The H3 resolution of the cell. * @param pentLeading4 Whether or not the cell is a pentagon with a leading * digit 4. * @param substrate Whether or not the cell is in a substrate grid. * @return 0 if on original face (no overage); 1 if on face edge (only occurs * on substrate grids); 2 if overage on new face interior */ int _adjustOverageClassII(FaceIJK* fijk, int res, int pentLeading4, int substrate) { int overage = 0; CoordIJK* ijk = &fijk->coord; // get the maximum dimension value; scale if a substrate grid int maxDim = maxDimByCIIres[res]; if (substrate) maxDim *= 3; // check for overage if (substrate && ijk->i + ijk->j + ijk->k == maxDim) // on edge overage = 1; else if (ijk->i + ijk->j + ijk->k > maxDim) // overage { overage = 2; const FaceOrientIJK* fijkOrient; if (ijk->k > 0) { if (ijk->j > 0) // jk "quadrant" fijkOrient = &faceNeighbors[fijk->face][JK]; else // ik "quadrant" { fijkOrient = &faceNeighbors[fijk->face][KI]; // adjust for the pentagonal missing sequence if (pentLeading4) { // translate origin to center of pentagon CoordIJK origin; _setIJK(&origin, maxDim, 0, 0); CoordIJK tmp; _ijkSub(ijk, &origin, &tmp); // rotate to adjust for the missing sequence _ijkRotate60cw(&tmp); // translate the origin back to the center of the triangle _ijkAdd(&tmp, &origin, ijk); } } } else // ij "quadrant" fijkOrient = &faceNeighbors[fijk->face][IJ]; fijk->face = fijkOrient->face; // rotate and translate for adjacent face for (int i = 0; i < fijkOrient->ccwRot60; i++) _ijkRotate60ccw(ijk); CoordIJK transVec = fijkOrient->translate; int unitScale = unitScaleByCIIres[res]; if (substrate) unitScale *= 3; _ijkScale(&transVec, unitScale); _ijkAdd(ijk, &transVec, ijk); _ijkNormalize(ijk); // overage points on pentagon boundaries can end up on edges if (substrate && ijk->i + ijk->j + ijk->k == maxDim) // on edge overage = 1; } return overage; }