Sha256: 388f0f5648159877f42d3ea88d563c308f08415402e87972284419414813ae36
Contents?: true
Size: 1.08 KB
Versions: 5
Compression:
Stored size: 1.08 KB
Contents
require "cumo/narray" require "dnn" require "dnn/datasets/mnist" include DNN::Models include DNN::Layers include DNN::Optimizers include DNN::Losses x_train, y_train = DNN::MNIST.load_train x_test, y_test = DNN::MNIST.load_test x_train = x_train.reshape(x_train.shape[0], 784) x_test = x_test.reshape(x_test.shape[0], 784) x_train = Numo::SFloat.cast(x_train) / 255 x_test = Numo::SFloat.cast(x_test) / 255 y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat) y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat) if DNN.use_cumo? x_train = DNN::Utils.numo2cumo(x_train) y_train = DNN::Utils.numo2cumo(y_train) x_test = DNN::Utils.numo2cumo(x_test) y_test = DNN::Utils.numo2cumo(y_test) end model = Sequential.new model << InputLayer.new(784) model << Dense.new(256) model << ReLU.new model << Dense.new(256) model << ReLU.new model << Dense.new(10) model.setup(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, 10, batch_size: 128, test: [x_test, y_test]) accuracy, loss = model.evaluate(x_test, y_test) puts "accuracy: #{accuracy}" puts "loss: #{loss}"
Version data entries
5 entries across 5 versions & 1 rubygems
Version | Path |
---|---|
ruby-dnn-1.3.0 | examples/mnist_gpu.rb |
ruby-dnn-1.2.3 | examples/mnist_gpu.rb |
ruby-dnn-1.2.2 | examples/mnist_gpu.rb |
ruby-dnn-1.2.1 | examples/mnist_gpu.rb |
ruby-dnn-1.2.0 | examples/mnist_gpu.rb |