require 'spec_helper' describe Helper do context '#is_n?' do it{ expect(0.is_0?).to be_true } it{ expect(_(0).is_0?).to be_true } it{ expect(inverse(0, :+).is_0?).to be_true } it{ expect(1.is_1?).to be_true } it{ expect(_(1).is_1?).to be_true } it{ expect(inverse(1, :*).is_1?).to be_true } it{ expect(-1.is_minus1?).to be_true } it{ expect(_(-1).is_minus1?).to be_true } end context '#is_multiple_of' do it{ expect(0.is_multiple_of(:x).to_s).to eq('0') } it{ expect(_(0).is_multiple_of(:y).to_s).to eq('0')} it{ expect(:x.is_multiple_of(:x).to_s).to eq('1') } it{ expect(:x.is_multiple_of(:y)).to be_false } it{ expect((:x * :y).is_multiple_of(:x)).to eq(:y) } it{ expect((:x * :y).is_multiple_of(:y)).to eq(:x) } it{ expect((:x * :y).is_multiple_of(:z)).to be_false } end context '#combinable?' do it{ expect(:x.combinable?(:x, :+)).to be_true } it{ expect(:x.combinable?(:y, :+)).to be_false } it{ expect(:x.combinable?(:x, :*)).to be_true } it{ expect(:x.combinable?(:y, :*)).to be_false } it{ expect(1.combinable?(2, :+)).to be_true } it{ expect(1.combinable?(2, :*)).to be_true } end let(:addition) { (:x + :y) } let(:subtraction) { (:x - :y) } let(:multiplication){ (:x * :y) } let(:division) { (:x / :y) } let(:exponentiation){ (:x ^ :y) } it{ expect(addition.addition?).to be_true } it{ expect(multiplication.multiplication?).to be_true } it{ expect(exponentiation.exponentiation?).to be_true } it{ expect(inverse(:x, :+).inverse?(:x, :+)).to be_true } it{ expect(:x.inverse?(inverse(:x, :+), :+)).to be_true } it{ expect(inverse(:x, :*).inverse?(:x, :*)).to be_true } it{ expect(:x.inverse?(inverse(:x, :*), :*)).to be_true } end