Sha256: 36ead44623302bad81d844411a9bf2b9baf99b788091a7c64c80bf631fccb601

Contents?: true

Size: 1.64 KB

Versions: 1

Compression:

Stored size: 1.64 KB

Contents

require "bundler/setup"
require 'tensor_stream'
require 'benchmark'

tf = TensorStream

learning_rate = 0.01
momentum = 0.5
training_epochs = 10000
display_step = 50

train_X = [3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
7.042,10.791,5.313,7.997,5.654,9.27,3.1]
train_Y = [1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
2.827,3.465,1.65,2.904,2.42,2.94,1.3]

n_samples = train_X.size

X = tf.placeholder("float")
Y = tf.placeholder("float")

# Set model weights
W = tf.variable(rand, name: "weight")
b = tf.variable(rand, name: "bias")

# Construct a linear model
pred = X * W + b

# Mean squared error
cost = ((pred - Y) ** 2).reduce(:+) / ( 2 * n_samples)

# optimizer = TensorStream::Train::MomentumOptimizer.new(learning_rate, momentum).minimize(cost)
optimizer = TensorStream::Train::GradientDescentOptimizer.new(learning_rate).minimize(cost)

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

tf.session do |sess|
    start_time = Time.now
    sess.run(init)
    (0..training_epochs).each do |epoch|
      train_X.zip(train_Y).each do |x,y|
        sess.run(optimizer, feed_dict: {X => x, Y => y})
      end

      if (epoch+1) % display_step == 0
        c = sess.run(cost, feed_dict: {X => train_X, Y => train_Y})
        puts("Epoch:", '%04d' % (epoch+1), "cost=",  c, \
            "W=", sess.run(W), "b=", sess.run(b))
      end
    end

    puts("Optimization Finished!")
    training_cost = sess.run(cost, feed_dict: { X => train_X, Y => train_Y})
    puts("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
    puts("time elapsed ", Time.now.to_i - start_time.to_i)
end

Version data entries

1 entries across 1 versions & 1 rubygems

Version Path
tensor_stream-0.8.0 samples/linear_regression.rb