# # test/unit/bio/db/embl/test_sptr.rb - Unit test for Bio::SPTR # # Copyright::: Copyright (C) 2005 Mitsuteru Nakao # License:: The Ruby License # # $Id:$ # # loading helper routine for testing bioruby require 'pathname' load Pathname.new(File.join(File.dirname(__FILE__), ['..'] * 4, 'bioruby_test_helper.rb')).cleanpath.to_s # libraries needed for the tests require 'test/unit' require 'bio/db/embl/sptr' module Bio class TestSPTR < Test::Unit::TestCase def setup data = File.read(File.join(BioRubyTestDataPath, 'uniprot', 'p53_human.uniprot')) @obj = Bio::SPTR.new(data) end def test_id_line assert(@obj.id_line) end def test_id_line_entry_name assert_equal('P53_HUMAN', @obj.id_line('ENTRY_NAME')) end def test_id_line_data_class assert_equal('STANDARD', @obj.id_line('DATA_CLASS')) end def test_id_line_molecule_type assert_equal('PRT', @obj.id_line('MOLECULE_TYPE')) end def test_id_line_sequence_length assert_equal(393, @obj.id_line('SEQUENCE_LENGTH')) end def test_entry entry = 'P53_HUMAN' assert_equal(entry, @obj.entry) assert_equal(entry, @obj.entry_name) assert_equal(entry, @obj.entry_id) end def test_molecule assert_equal('PRT', @obj.molecule) assert_equal('PRT', @obj.molecule_type) end def test_sequence_length seqlen = 393 assert_equal(seqlen, @obj.sequence_length) assert_equal(seqlen, @obj.aalen) end def test_ac acs = ["P04637", "Q15086", "Q15087", "Q15088", "Q16535", "Q16807", "Q16808", "Q16809", "Q16810", "Q16811", "Q16848", "Q86UG1", "Q8J016", "Q99659", "Q9BTM4", "Q9HAQ8", "Q9NP68", "Q9NPJ2", "Q9NZD0", "Q9UBI2", "Q9UQ61"] assert_equal(acs, @obj.ac) assert_equal(acs, @obj.accessions) end def test_accession assert_equal('P04637', @obj.accession) end def test_dr assert_equal(17, @obj.dr.size) assert_equal(27, @obj.dr['GO'].size) assert_equal([["IPR002117", "P53"], ["IPR011615", "P53_DNA_bd"], ["IPR012346", "P53_RUNT_DNA_bd"], ["IPR010991", "p53_tetrameristn"]], @obj.dr['InterPro']) end def test_dr_with_key pfam = [ { " " => "1", "Version" => "P53", "Accession" => "PF00870", "Molecular Type" => nil }, { " " => "1", "Version" => "P53_tetramer", "Accession" => "PF07710", "Molecular Type" => nil } ] assert_equal(pfam, @obj.dr('Pfam')) embl3 = { " " => "JOINED", "Version" => "AAA59987.1", "Accession" => "M13113", "Molecular Type" => "Genomic_DNA" } assert_equal(embl3, @obj.dr('EMBL')[3]) end def test_dr_with_key_empty assert_equal([], @obj.dr('NOT_A_DATABASE')) end def test_dt assert(@obj.dt) end def test_dt_created assert_equal('13-AUG-1987 (Rel. 05, Created)', @obj.dt('created')) end def test_dt_sequence assert_equal('01-MAR-1989 (Rel. 10, Last sequence update)', @obj.dt('sequence')) end def test_dt_annotation assert_equal('13-SEP-2005 (Rel. 48, Last annotation update)', @obj.dt('annotation')) end def test_de assert(@obj.de) end def test_protein_name assert_equal("Cellular tumor antigen p53", @obj.protein_name) end def test_synonyms ary = ["Tumor suppressor p53", "Phosphoprotein p53", "Antigen NY-CO-13"] assert_equal(ary, @obj.synonyms) end def test_gn assert_equal([{:orfs=>[], :synonyms=>["P53"], :name=>"TP53", :loci=>[]}], @obj.gn) end def test_gn_uniprot_parser gn_uniprot_data = '' assert_equal([{:orfs=>[], :loci=>[], :name=>"TP53", :synonyms=>["P53"]}], @obj.instance_eval("gn_uniprot_parser")) end def test_gn_old_parser gn_old_data = '' assert_equal([["Name=TP53; Synonyms=P53;"]], @obj.instance_eval("gn_old_parser")) end def test_gene_names assert_equal(["TP53"], @obj.gene_names) end def test_gene_name assert_equal('TP53', @obj.gene_name) end def test_os assert(@obj.os) end def test_os_access assert_equal("Homo sapiens (Human)", @obj.os(0)) end def test_os_access2 assert_equal({"name"=>"(Human)", "os"=>"Homo sapiens"}, @obj.os[0]) end def test_og_1 og = "OG Plastid; Chloroplast." ary = ['Plastid', 'Chloroplast'] @obj.instance_eval("@orig['OG'] = '#{og}'") assert_equal(ary, @obj.og) end def test_og_2 og = "OG Mitochondrion." ary = ['Mitochondrion'] @obj.instance_eval("@orig['OG'] = '#{og}'") assert_equal(ary, @obj.og) end def test_og_3 og = "OG Plasmid sym pNGR234a." ary = ["Plasmid sym pNGR234a"] @obj.instance_eval("@orig['OG'] = '#{og}'") assert_equal(ary, @obj.og) end def test_og_4 og = "OG Plastid; Cyanelle." ary = ['Plastid', 'Cyanelle'] @obj.instance_eval("@orig['OG'] = '#{og}'") assert_equal(ary, @obj.og) end def test_og_5 og = "OG Plasmid pSymA (megaplasmid 1)." ary = ["Plasmid pSymA (megaplasmid 1)"] @obj.instance_eval("@orig['OG'] = '#{og}'") assert_equal(ary, @obj.og) end def test_og_6 og = "OG Plasmid pNRC100, Plasmid pNRC200, and Plasmid pHH1." ary = ['Plasmid pNRC100', 'Plasmid pNRC200', 'Plasmid pHH1'] @obj.instance_eval("@orig['OG'] = '#{og}'") assert_equal(ary, @obj.og) end def test_oc assert_equal(["Eukaryota", "Metazoa", "Chordata", "Craniata", "Vertebrata", "Euteleostomi", "Mammalia", "Eutheria", "Euarchontoglires", "Primates", "Catarrhini", "Hominidae", "Homo"], @obj.oc) end def test_ox assert_equal({"NCBI_TaxID"=>["9606"]}, @obj.ox) end def test_ref # Bio::SPTR#ref assert_equal(Array, @obj.ref.class) end def test_cc assert_equal(Hash, @obj.cc.class) end def test_cc_database db = [{"NAME" => "IARC TP53 mutation database", "WWW" => "http://www.iarc.fr/p53/", "FTP" => nil, "NOTE" => "IARC db of somatic p53 mutations"}, {"NAME" => "Tokyo p53", "WWW" => "http://p53.genome.ad.jp/", "FTP" => nil, "NOTE" => "University of Tokyo db of p53 mutations"}, {"NAME" => "p53 web site at the Institut Curie", "WWW" => "http://p53.curie.fr/", "FTP" => nil, "NOTE" => nil}, {"NAME" => "Atlas Genet. Cytogenet. Oncol. Haematol.", "WWW" => "http://www.infobiogen.fr/services/chromcancer/Genes/P53ID88.html", "FTP" => nil, "NOTE" => nil}] assert_equal(db, @obj.cc('DATABASE')) end def test_cc_alternative_products ap = {"Comment" => "", "Named isoforms" => "2", "Variants" => [{"IsoId" => ["P04637-1"], "Name" => "1", "Synonyms" => [], "Sequence" => ["Displayed"]}, {"IsoId" => ["P04637-2"], "Name" => "2", "Synonyms" => ["I9RET"], "Sequence" => ["VSP_006535", "VSP_006536"]}], "Event" => ["Alternative splicing"]} assert_equal(ap, @obj.cc('ALTERNATIVE PRODUCTS')) end def test_cc_mass_spectrometry assert_equal(nil, @obj.cc('MASS SPECTROMETRY')) end def test_kw keywords = ["3D-structure", "Acetylation", "Activator", "Alternative splicing", "Anti-oncogene", "Apoptosis", "Cell cycle", "Disease mutation", "DNA-binding", "Glycoprotein", "Li-Fraumeni syndrome", "Metal-binding", "Nuclear protein", "Phosphorylation", "Polymorphism", "Transcription", "Transcription regulation", "Zinc"] assert_equal(keywords, @obj.kw) end def test_ft assert(@obj.ft) name = 'DNA_BIND' assert_equal([{"FTId"=>"", "From"=>102, "diff"=>[], "To"=>292, "Description"=>"", "original" => ['DNA_BIND', '102', '292', '', '']}], @obj.ft[name]) end def test_sq assert_equal({"CRC64"=>"AD5C149FD8106131", "aalen"=>393, "MW"=>43653}, @obj.sq) end def test_sq_crc64 assert_equal("AD5C149FD8106131", @obj.sq('CRC64')) end def test_sq_mw mw = 43653 assert_equal(mw, @obj.sq('mw')) assert_equal(mw, @obj.sq('molecular')) assert_equal(mw, @obj.sq('weight')) end def test_sq_len length = 393 assert_equal(length, @obj.sq('len')) assert_equal(length, @obj.sq('length')) assert_equal(length, @obj.sq('AA')) end def test_seq seq = 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD' assert_equal(seq, @obj.seq) assert_equal(seq, @obj.aaseq) end end # class TestSPTR class TestSPTRCC < Test::Unit::TestCase def test_allergen # ALLERGEN Information relevant to allergenic proteins data = 'CC -!- ALLERGEN: Causes an allergic reaction in human.' sp = Bio::SPTR.new(data) assert_equal(['Causes an allergic reaction in human.'], sp.cc['ALLERGEN']) assert_equal(['Causes an allergic reaction in human.'], sp.cc('ALLERGEN')) end def test_alternative_products_access_as_hash data = "CC -!- ALTERNATIVE PRODUCTS: CC Event=Alternative initiation; Named isoforms=2; CC Name=Long; CC IsoId=P68250-1; Sequence=Displayed; CC Name=Short; CC IsoId=P68250-2; Sequence=VSP_018631; CC Note=Contains a N-acetylmethionine at position 1 (By CC similarity);" res = ["Event=Alternative initiation; Named isoforms=2; Name=Long; IsoId=P68250-1; Sequence=Displayed; Name=Short; IsoId=P68250-2; Sequence=VSP_018631; Note=Contains a N-acetylmethionine at position 1 (By similarity);"] sp = Bio::SPTR.new(data) assert_equal(res, sp.cc['ALTERNATIVE PRODUCTS']) end def test_alternative_products_ai # ALTERNATIVE PRODUCTS Description of the existence of related protein sequence(s) produced by alternative splicing of the same gene, alternative promoter usage, ribosomal frameshifting or by the use of alternative initiation codons; see 3.21.15 # Alternative promoter usage, Alternative splicing, Alternative initiation, Ribosomal frameshifting data = "CC -!- ALTERNATIVE PRODUCTS: CC Event=Alternative initiation; Named isoforms=2; CC Name=Long; CC IsoId=P68250-1; Sequence=Displayed; CC Name=Short; CC IsoId=P68250-2; Sequence=VSP_018631; CC Note=Contains a N-acetylmethionine at position 1 (By CC similarity);" sp = Bio::SPTR.new(data) assert_equal({"Comment"=>"", "Named isoforms"=>"2", "Variants"=> [{"IsoId"=>["P68250-1"], "Name"=>"Long", "Synonyms" => [], "Sequence"=>["Displayed"]}, {"IsoId"=>["P68250-2"], "Name"=>"Short", "Synonyms" => [], "Sequence"=>["VSP_018631"]}], "Event"=>["Alternative initiation"]}, sp.cc('ALTERNATIVE PRODUCTS')) end def test_alternative_products_as data = "CC -!- ALTERNATIVE PRODUCTS: CC Event=Alternative splicing; Named isoforms=2; CC Name=1; CC IsoId=P04637-1; Sequence=Displayed; CC Name=2; Synonyms=I9RET; CC IsoId=P04637-2; Sequence=VSP_006535, VSP_006536; CC Note=Seems to be non-functional. Expressed in quiescent CC lymphocytes;" sp = Bio::SPTR.new(data) assert_equal({"Comment"=>"", "Named isoforms"=>"2", "Variants"=> [{"Name"=>"1", "IsoId"=>["P04637-1"], "Synonyms"=>[], "Sequence"=>["Displayed"]}, {"IsoId"=>["P04637-2"], "Name"=>"2", "Synonyms"=>["I9RET"], "Sequence"=>["VSP_006535", "VSP_006536"]}], "Event"=>["Alternative splicing"]}, sp.cc('ALTERNATIVE PRODUCTS')) end def test_alternative_products_apu data = "CC -!- ALTERNATIVE PRODUCTS: CC Event=Alternative promoter usage, Alternative splicing; Named isoforms=5; CC Comment=Additional isoforms (AAT-1L and AAT-1S) may exist; CC Name=1; Synonyms=AAT-1M; CC IsoId=Q7Z4T9-1; Sequence=Displayed; CC Name=2; CC IsoId=Q7Z4T9-2; Sequence=VSP_014910, VSP_014911; CC Note=No experimental confirmation available; CC Name=3; CC IsoId=Q7Z4T9-3; Sequence=VSP_014907, VSP_014912; CC Name=4; Synonyms=AAT1-alpha; CC IsoId=Q7Z4T9-4; Sequence=VSP_014908; CC Note=May be produced by alternative promoter usage; CC Name=5; Synonyms=AAT1-beta, AAT1-gamma; CC IsoId=Q7Z4T9-5; Sequence=VSP_014909; CC Note=May be produced by alternative promoter usage;" sp = Bio::SPTR.new(data) assert_equal({"Comment"=>"Additional isoforms (AAT-1L and AAT-1S) may exist", "Named isoforms"=>"5", "Variants"=> [{"Name"=>"1", "IsoId"=>["Q7Z4T9-1"], "Synonyms"=>["AAT-1M"], "Sequence"=>["Displayed"]}, {"Name"=>"2", "IsoId"=>["Q7Z4T9-2"], "Synonyms" => [], "Sequence"=>["VSP_014910", "VSP_014911"]}, {"Name"=>"3", "IsoId"=>["Q7Z4T9-3"], "Synonyms" => [], "Sequence"=>["VSP_014907", "VSP_014912"]}, {"Name"=>"4", "IsoId"=>["Q7Z4T9-4"], "Synonyms"=>["AAT1-alpha"], "Sequence"=>["VSP_014908"]}, {"Name"=>"5", "IsoId"=>["Q7Z4T9-5"], "Synonyms"=>["AAT1-beta", "AAT1-gamma"], "Sequence"=>["VSP_014909"]}], "Event"=>["Alternative promoter usage", "Alternative splicing"]}, sp.cc('ALTERNATIVE PRODUCTS')) end def test_alternative_products_rf data = "" sp = Bio::SPTR.new(data) assert_equal({}, sp.cc('ALTERNATIVE PRODUCTS')) end def test_biophysicochemical_properties # BIOPHYSICOCHEMICAL PROPERTIES Description of the information relevant to biophysical and physicochemical data and information on pH dependence, temperature dependence, kinetic parameters, redox potentials, and maximal absorption; see 3.21.8 # data = 'CC -!- BIOPHYSICOCHEMICAL PROPERTIES: CC Kinetic parameters: CC KM=45 uM for AdoMet; CC Vmax=32 uM/h/mg enzyme; CC pH dependence: CC Optimum pH is 8.2;' sp = Bio::SPTR.new(data) assert_equal(["Kinetic parameters: KM=45 uM for AdoMet; Vmax=32 uM/h/mg enzyme; pH dependence: Optimum pH is 8.2;"], sp.cc['BIOPHYSICOCHEMICAL PROPERTIES']) assert_equal({"Redox potential" => "", "Temperature dependence" => "", "Kinetic parameters" => {"KM" => "45 uM for AdoMet", "Vmax" => "32 uM/h/mg enzyme"}, "Absorption" => {}, "pH dependence" => "Optimum pH is 8.2"}, sp.cc('BIOPHYSICOCHEMICAL PROPERTIES')) # 3.12.2. Syntax of the topic 'BIOPHYSICOCHEMICAL PROPERTIES' data = "CC -!- BIOPHYSICOCHEMICAL PROPERTIES: CC Absorption: CC Abs(max)=xx nm; CC Note=free_text; CC Kinetic parameters: CC KM=xx unit for substrate [(free_text)]; CC Vmax=xx unit enzyme [free_text]; CC Note=free_text; CC pH dependence: CC free_text; CC Redox potential: CC free_text; CC Temperature dependence: CC free_text;" sp = Bio::SPTR.new(data) assert_equal({"Redox potential"=>"free_text", "Temperature dependence"=>"free_text", "Kinetic parameters"=> {"KM"=>"xx unit for substrate [(free_text)]", "Note"=>"free_text", "Vmax"=>"xx unit enzyme [free_text]"}, "Absorption"=>{"Note"=>"free_text", "Abs(max)"=>"xx nm"}, "pH dependence"=>"free_text"}, sp.cc('BIOPHYSICOCHEMICAL PROPERTIES')) end def test_biotechnology # BIOTECHNOLOGY Description of the use of a specific protein in a biotechnological process data = 'CC -!- BIOTECHNOLOGY: Introduced by genetic manipulation and expressed in CC improved ripening tomato by Monsanto. ACC is the immediate CC precursor of the phytohormone ethylene which is involved in the CC control of ripening. ACC deaminase reduces ethylene biosynthesis CC and thus extends the shelf life of fruits and vegetables.' sp = Bio::SPTR.new(data) assert_equal(["Introduced by genetic manipulation and expressed in improved ripening tomato by Monsanto. ACC is the immediate precursor of the phytohormone ethylene which is involved in the control of ripening. ACC deaminase reduces ethylene biosynthesis and thus extends the shelf life of fruits and vegetables."], sp.cc['BIOTECHNOLOGY']) end def test_catalytic_activity # CATALYTIC ACTIVITY Description of the reaction(s) catalyzed by an enzyme [1] data = 'CC -!- CATALYTIC ACTIVITY: Hydrolysis of alkylated DNA, releasing 3- CC methyladenine, 3-methylguanine, 7-methylguanine and 7- CC methyladenine.' sp = Bio::SPTR.new(data) assert_equal(["Hydrolysis of alkylated DNA, releasing 3-methyladenine, 3-methylguanine, 7-methylguanine and 7-methyladenine."], sp.cc['CATALYTIC ACTIVITY']) end def test_caution # CAUTION Warning about possible errors and/or grounds for confusion data = 'CC -!- CAUTION: Ref.1 sequence differs from that shown due to a Leu codon CC in position 480 which was translated as a stop codon to shorten CC the sequence.' sp = Bio::SPTR.new(data) assert_equal(["Ref.1 sequence differs from that shown due to a Leu codon in position 480 which was translated as a stop codon to shorten the sequence."], sp.cc['CAUTION']) assert_equal("Ref.1 sequence differs from that shown due to a Leu codon in position 480 which was translated as a stop codon to shorten the sequence.", sp.cc('CAUTION')) end def test_cofactor # COFACTOR Description of any non-protein substance required by an enzyme for its catalytic activity data = 'CC -!- COFACTOR: Cl(-). Is unique in requiring Cl(-) for its activity. CC -!- COFACTOR: Mg(2+).' sp = Bio::SPTR.new(data) assert_equal(["Cl(-). Is unique in requiring Cl(-) for its activity.", "Mg(2+)."], sp.cc['COFACTOR']) assert_equal(["Cl(-). Is unique in requiring Cl(-) for its activity.", "Mg(2+)."], sp.cc('COFACTOR')) end def test_developmental_stage # DEVELOPMENTAL STAGE Description of the developmentally-specific expression of mRNA or protein data = 'CC -!- DEVELOPMENTAL STAGE: In females, isoform 1 is expressed at day 35 CC with higher levels detected at day 56. Isoform 1 is not detected CC in males of any age.' sp = Bio::SPTR.new(data) assert_equal(["In females, isoform 1 is expressed at day 35 with higher levels detected at day 56. Isoform 1 is not detected in males of any age."], sp.cc['DEVELOPMENTAL STAGE']) assert_equal("In females, isoform 1 is expressed at day 35 with higher levels detected at day 56. Isoform 1 is not detected in males of any age.", sp.cc('DEVELOPMENTAL STAGE')) end def test_disease # DISEASE Description of the disease(s) associated with a deficiency of a protein data = 'CC -!- DISEASE: Defects in APP are a cause of hereditary cerebral CC hemorrhage with amyloidosis (HCHWAD) [MIM:609065, 104760]. This CC disorder is characterized by amyloid deposits in cerebral vessels. CC The principal clinical characteristics are recurring cerebral CC hemorrhages, sometimes preceded by migrainous headaches or mental CC cleavage. Various types of HCHWAD are known. They differ in onset CC and aggressiveness of the disease. The Iowa type demonstrated no CC cerebral hemorrhaging but is characterized by progressive CC cognitive decline. Beta-APP40 is the predominant form of CC cerebrovascular amyloid.' sp = Bio::SPTR.new(data) assert_equal(["Defects in APP are a cause of hereditary cerebral hemorrhage with amyloidosis (HCHWAD) [MIM:609065, 104760]. This disorder is characterized by amyloid deposits in cerebral vessels. The principal clinical characteristics are recurring cerebral hemorrhages, sometimes preceded by migrainous headaches or mental cleavage. Various types of HCHWAD are known. They differ in onset and aggressiveness of the disease. The Iowa type demonstrated no cerebral hemorrhaging but is characterized by progressive cognitive decline. Beta-APP40 is the predominant form of cerebrovascular amyloid."], sp.cc['DISEASE']) assert_equal("Defects in APP are a cause of hereditary cerebral hemorrhage with amyloidosis (HCHWAD) [MIM:609065, 104760]. This disorder is characterized by amyloid deposits in cerebral vessels. The principal clinical characteristics are recurring cerebral hemorrhages, sometimes preceded by migrainous headaches or mental cleavage. Various types of HCHWAD are known. They differ in onset and aggressiveness of the disease. The Iowa type demonstrated no cerebral hemorrhaging but is characterized by progressive cognitive decline. Beta-APP40 is the predominant form of cerebrovascular amyloid.", sp.cc('DISEASE')) end def test_domain # DOMAIN Description of the domain structure of a protein data = 'CC -!- DOMAIN: The basolateral sorting signal (BaSS) is required for CC sorting of membrane proteins to the basolateral surface of CC epithelial cells. CC -!- DOMAIN: The NPXY sequence motif found in many tyrosine- CC phosphorylated proteins is required for the specific binding of CC the PID domain. However, additional amino acids either N- or C- CC terminal to the NPXY motif are often required for complete CC interaction. The PID domain-containing proteins which bind APP CC require the YENPTY motif for full interaction. These interactions CC are independent of phosphorylation on the terminal tyrosine CC residue. The NPXY site is also involved in clathrin-mediated CC endocytosis (By similarity).' sp = Bio::SPTR.new(data) assert_equal(["The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells.", "The NPXY sequence motif found in many tyrosine-phosphorylated proteins is required for the specific binding of the PID domain. However, additional amino acids either N-or C-terminal to the NPXY motif are often required for complete interaction. The PID domain-containing proteins which bind APP require the YENPTY motif for full interaction. These interactions are independent of phosphorylation on the terminal tyrosine residue. The NPXY site is also involved in clathrin-mediated endocytosis (By similarity)."], sp.cc['DOMAIN']) assert_equal(["The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells.", "The NPXY sequence motif found in many tyrosine-phosphorylated proteins is required for the specific binding of the PID domain. However, additional amino acids either N-or C-terminal to the NPXY motif are often required for complete interaction. The PID domain-containing proteins which bind APP require the YENPTY motif for full interaction. These interactions are independent of phosphorylation on the terminal tyrosine residue. The NPXY site is also involved in clathrin-mediated endocytosis (By similarity)."], sp.cc('DOMAIN')) end def test_enzyme_regulation # ENZYME REGULATION Description of an enzyme regulatory mechanism data = 'CC -!- ENZYME REGULATION: Insensitive to calcium/calmodulin. Stimulated CC by the G protein beta and gamma subunit complex.' sp = Bio::SPTR.new(data) assert_equal(["Insensitive to calcium/calmodulin. Stimulated by the G protein beta and gamma subunit complex."], sp.cc['ENZYME REGULATION']) assert_equal("Insensitive to calcium/calmodulin. Stimulated by the G protein beta and gamma subunit complex.", sp.cc('ENZYME REGULATION')) end def test_function # FUNCTION General description of the function(s) of a protein data = 'CC -!- FUNCTION: May play a fundamental role in situations where fine CC interplay between intracellular calcium and cAMP determines the CC cellular function. May be a physiologically relevant docking site CC for calcineurin (By similarity).' sp = Bio::SPTR.new(data) assert_equal(["May play a fundamental role in situations where fine interplay between intracellular calcium and cAMP determines the cellular function. May be a physiologically relevant docking site for calcineurin (By similarity)."], sp.cc['FUNCTION']) assert_equal("May play a fundamental role in situations where fine interplay between intracellular calcium and cAMP determines the cellular function. May be a physiologically relevant docking site for calcineurin (By similarity).", sp.cc('FUNCTION')) end def test_induction # INDUCTION Description of the compound(s) or condition(s) that regulate gene expression data = 'CC -!- INDUCTION: By pheromone (alpha-factor).' sp = Bio::SPTR.new(data) assert_equal(["By pheromone (alpha-factor)."], sp.cc['INDUCTION']) assert_equal("By pheromone (alpha-factor).", sp.cc('INDUCTION')) end def test_interaction # INTERACTION Conveys information relevant to binary protein-protein interaction 3.21.12 data = 'CC -!- INTERACTION: CC P62158:CALM1 (xeno); NbExp=1; IntAct=EBI-457011, EBI-397435; CC P62155:calm1 (xeno); NbExp=1; IntAct=EBI-457011, EBI-397568;' sp = Bio::SPTR.new(data) assert_equal(["P62158:CALM1 (xeno); NbExp=1; IntAct=EBI-457011, EBI-397435; P62155:calm1 (xeno); NbExp=1; IntAct=EBI-457011, EBI-397568;"], sp.cc['INTERACTION']) assert_equal([{'SP_Ac' => 'P62158', 'identifier' => 'CALM1', 'optional_identifier' => '(xeno)', 'NbExp' => '1', 'IntAct' => ['EBI-457011', 'EBI-397435']}, {'SP_Ac' => 'P62155', 'identifier' => 'calm1', 'optional_identifier' => '(xeno)', 'NbExp' => '1', 'IntAct' => ['EBI-457011', 'EBI-397568']}], sp.cc('INTERACTION')) end def test_mass_spectrometry # MASS SPECTROMETRY Reports the exact molecular weight of a protein or part of a protein as determined by mass spectrometric methods; see 3.21.23 data = "CC -!- MASS SPECTROMETRY: MW=2894.9; MW_ERR=3; METHOD=MALDI; RANGE=1-29; CC NOTE=Ref.1. CC -!- MASS SPECTROMETRY: MW=2892.2; METHOD=Electrospray; RANGE=1-29; CC NOTE=Ref.2." sp = Bio::SPTR.new(data) assert_equal(["MW=2894.9; MW_ERR=3; METHOD=MALDI; RANGE=1-29; NOTE=Ref.1.", "MW=2892.2; METHOD=Electrospray; RANGE=1-29; NOTE=Ref.2."], sp.cc['MASS SPECTROMETRY']) assert_equal([{'MW' => '2894.9', 'MW_ERR' => '3', 'METHOD' => 'MALDI', 'RANGE' => '1-29', 'NOTE' => 'Ref.1'}, {'MW' => '2892.2', 'METHOD' => 'Electrospray', 'MW_ERR' => nil, 'RANGE' => '1-29', 'NOTE' => 'Ref.2'}], sp.cc('MASS SPECTROMETRY')) end def test_miscellaneous # MISCELLANEOUS Any comment which does not belong to any of the other defined topics data = 'CC -!- MISCELLANEOUS: There are two isozymes; a cytoplasmic one and a CC mitochondrial one.' sp = Bio::SPTR.new(data) assert_equal(["There are two isozymes; a cytoplasmic one and a mitochondrial one."], sp.cc['MISCELLANEOUS']) end def test_pathway # PATHWAY Description of the metabolic pathway(s) with which a protein is associated data = 'CC -!- PATHWAY: Carbohydrate degradation; glycolysis; D-glyceraldehyde 3- CC phosphate and glycerone phosphate from D-glucose: step 4.' sp = Bio::SPTR.new(data) assert_equal(["Carbohydrate degradation; glycolysis; D-glyceraldehyde 3-phosphate and glycerone phosphate from D-glucose: step 4."], sp.cc['PATHWAY']) assert_equal(["Carbohydrate degradation", 'glycolysis', 'D-glyceraldehyde 3-phosphate', 'glycerone phosphate from D-glucose', 'step 4'], sp.cc('PATHWAY')) end def test_pharmaceutical # PHARMACEUTICAL Description of the use of a protein as a pharmaceutical drug data = 'CC -!- PHARMACEUTICAL: Available under the names Factrel (Ayerst Labs), CC Lutrepulse or Lutrelef (Ferring Pharmaceuticals) and Relisorm CC (Serono). Used in evaluating hypothalamic-pituitary gonadotropic CC function.' sp = Bio::SPTR.new(data) assert_equal(["Available under the names Factrel (Ayerst Labs), Lutrepulse or Lutrelef (Ferring Pharmaceuticals) and Relisorm (Serono). Used in evaluating hypothalamic-pituitary gonadotropic function."], sp.cc['PHARMACEUTICAL']) end def test_polymorphism # POLYMORPHISM Description of polymorphism(s) data = 'CC -!- POLYMORPHISM: Position 161 is associated with platelet-specific CC alloantigen Siba. Siba(-) has Thr-161 and Siba(+) has Met-161. CC Siba is involved in neonatal alloimmune thrombocytopenia (NATP). CC -!- POLYMORPHISM: Polymorphisms arise from a variable number of tandem CC 13-amino acid repeats of S-E-P-A-P-S-P-T-T-P-E-P-T in the mucin- CC like macroglycopeptide (Pro/Thr-rich) domain. Allele D (shown CC here) contains one repeat starting at position 415, allele C CC contains two repeats, allele B contains three repeats and allele A CC contains four repeats.' sp = Bio::SPTR.new(data) assert_equal(["Position 161 is associated with platelet-specific alloantigen Siba. Siba(-) has Thr-161 and Siba(+) has Met-161. Siba is involved in neonatal alloimmune thrombocytopenia (NATP).", "Polymorphisms arise from a variable number of tandem 13-amino acid repeats of S-E-P-A-P-S-P-T-T-P-E-P-T in the mucin-like macroglycopeptide (Pro/Thr-rich) domain. Allele D (shown here) contains one repeat starting at position 415, allele C contains two repeats, allele B contains three repeats and allele A contains four repeats."], sp.cc['POLYMORPHISM']) end def test_ptm # PTM Description of any chemical alternation of a polypeptide (proteolytic cleavage, amino acid modifications including crosslinks). This topic complements information given in the feature table or indicates polypeptide modifications for which position-specific data is not available. data = 'CC -!- PTM: N-glycosylated, contains approximately 8 kDa of N-linked CC carbohydrate. CC -!- PTM: Palmitoylated.' sp = Bio::SPTR.new(data) assert_equal(["N-glycosylated, contains approximately 8 kDa of N-linked carbohydrate.", "Palmitoylated."], sp.cc['PTM']) end def test_rna_editing # RNA EDITING Description of any type of RNA editing that leads to one or more amino acid changes data = 'CC -!- RNA EDITING: Modified_positions=50, 59, 78, 87, 104, 132, 139, CC 146, 149, 160, 170, 177, 185, 198, 208, 223, 226, 228, 243, 246, CC 252, 260, 264, 277, 285, 295; Note=The nonsense codons at CC positions 50, 78, 104, 260 and 264 are modified to sense codons.' data = 'CC -!- RNA EDITING: Modified_positions=607; Note=Fully edited in the CC brain. Heteromerically expressed edited GLUR2 (R) receptor CC complexes are impermeable to calcium, whereas the unedited (Q) CC forms are highly permeable to divalent ions (By similarity).' sp = Bio::SPTR.new(data) assert_equal(["Modified_positions=607; Note=Fully edited in the brain. Heteromerically expressed edited GLUR2 (R) receptor complexes are impermeable to calcium, whereas the unedited (Q) forms are highly permeable to divalent ions (By similarity)."], sp.cc['RNA EDITING']) assert_equal({"Modified_positions" => ['607'], "Note" => "Fully edited in the brain. Heteromerically expressed edited GLUR2 (R) receptor complexes are impermeable to calcium, whereas the unedited (Q) forms are highly permeable to divalent ions (By similarity)."}, sp.cc('RNA EDITING')) end def test_similarity # SIMILARITY Description of the similaritie(s) (sequence or structural) of a protein with other proteins data = 'CC -!- SIMILARITY: Contains 1 protein kinase domain. CC -!- SIMILARITY: Contains 1 RGS domain.' sp = Bio::SPTR.new(data) assert_equal(["Contains 1 protein kinase domain.", "Contains 1 RGS domain."], sp.cc['SIMILARITY']) end def test_subcellular_location # SUBCELLULAR LOCATION Description of the subcellular location of the mature protein data = 'CC -!- SUBCELLULAR LOCATION: Or: Cytoplasm. Or: Secreted protein. May be CC secreted by a non-classical secretory pathway.' data = "CC -!- SUBCELLULAR LOCATION: Cytoplasmic or may be secreted by a non- CC classical secretory pathway (By similarity)." data = "CC -!- SUBCELLULAR LOCATION: Cytoplasm. In neurons, axonally transported CC to the nerve terminals." data = "CC -!- SUBCELLULAR LOCATION: Cell wall. Probably the external side of the CC cell wall." data = "CC -!- SUBCELLULAR LOCATION: Endosome; late endosome; late endosomal CC membrane; single-pass type I membrane protein. Lysosome; lysosomal CC membrane; single-pass type I membrane protein. Localizes to late CC endocytic compartment. Associates with lysosome membranes." data = "CC -!- SUBCELLULAR LOCATION: Plastid; chloroplast; chloroplast membrane; CC peripheral membrane protein. Plastid; chloroplast; chloroplast CC stroma." sp = Bio::SPTR.new(data) assert_equal(["Plastid; chloroplast; chloroplast membrane; peripheral membrane protein. Plastid; chloroplast; chloroplast stroma."], sp.cc['SUBCELLULAR LOCATION']) assert_equal([["Plastid", "chloroplast", "chloroplast membrane", "peripheral membrane protein"], ["Plastid", "chloroplast", "chloroplast stroma"]], sp.cc('SUBCELLULAR LOCATION')) end def test_subunit # SUBUNIT Description of the quaternary structure of a protein and any kind of interactions with other proteins or protein complexes; except for receptor-ligand interactions, which are described in the topic FUNCTION. data = 'CC -!- SUBUNIT: Interacts with BTK. Interacts with all isoforms of MAPK8, CC MAPK9, MAPK10 and MAPK12.' data = 'CC -!- SUBUNIT: Homotetramer.' sp = Bio::SPTR.new(data) assert_equal(["Homotetramer."], sp.cc['SUBUNIT']) end def test_tissue_specificity # TISSUE SPECIFICITY Description of the tissue-specific expression of mRNA or protein data = "CC -!- TISSUE SPECIFICITY: Heart, brain and liver mitochondria." data = "CC -!- TISSUE SPECIFICITY: Widely expressed with highest expression in CC thymus, testis, embryo and proliferating blood lymphocytes." data = "CC -!- TISSUE SPECIFICITY: Isoform 2 is highly expressed in the brain, CC heart, spleen, kidney and blood. Isoform 2 is expressed (at CC protein level) in the spleen, skeletal muscle and gastrointestinal CC epithelia." sp = Bio::SPTR.new(data) assert_equal(["Isoform 2 is highly expressed in the brain, heart, spleen, kidney and blood. Isoform 2 is expressed (at protein level) in the spleen, skeletal muscle and gastrointestinal epithelia."], sp.cc['TISSUE SPECIFICITY']) end def test_toxic_dose # TOXIC DOSE Description of the lethal dose (LD), paralytic dose (PD) or effective dose of a protein data = 'CC -!- TOXIC DOSE: LD(50) is 12 mg/kg by intraperitoneal injection.' sp = Bio::SPTR.new(data) assert_equal(["LD(50) is 12 mg/kg by intraperitoneal injection."], sp.cc['TOXIC DOSE']) end def test_web_resource # WEB RESOURCE Description of a cross-reference to a network database/resource for a specific protein; see 3.21.34 data = 'CC -!- WEB RESOURCE: NAME=Inherited peripheral neuropathies mutation db; CC URL="http://www.molgen.ua.ac.be/CMTMutations/". CC -!- WEB RESOURCE: NAME=Connexin-deafness homepage; CC URL="http://www.crg.es/deafness/". CC -!- WEB RESOURCE: NAME=GeneReviews; CC URL="http://www.genetests.org/query?gene=GJB1".' sp = Bio::SPTR.new(data) assert_equal(['NAME=Inherited peripheral neuropathies mutation db; URL="http://www.molgen.ua.ac.be/CMTMutations/".', 'NAME=Connexin-deafness homepage; URL="http://www.crg.es/deafness/".', 'NAME=GeneReviews; URL="http://www.genetests.org/query?gene=GJB1".'], sp.cc['WEB RESOURCE']) assert_equal([{'NAME' => "Inherited peripheral neuropathies mutation db", 'URL' => 'http://www.molgen.ua.ac.be/CMTMutations/', 'NOTE' => nil}, {'NAME' => "Connexin-deafness homepage", 'URL' => 'http://www.crg.es/deafness/', 'NOTE' => nil}, {'NAME' => "GeneReviews", 'URL' => 'http://www.genetests.org/query?gene=GJB1', 'NOTE' => nil}], sp.cc('WEB RESOURCE')) end end # class TestSPTRCC # http://br.expasy.org/sprot/userman.html#Ref_line class TestSPTRRef < Test::Unit::TestCase def setup data = 'RN [1] RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS A AND C), FUNCTION, INTERACTION RP WITH PKC-3, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, DEVELOPMENTAL RP STAGE, AND MUTAGENESIS OF PHE-175 AND PHE-221. RC STRAIN=Bristol N2; RX PubMed=11134024; DOI=10.1074/jbc.M008990200; RG The mouse genome sequencing consortium; RA Galinier A., Bleicher F., Negre D., Perriere G., Duclos B., RA Cozzone A.J., Cortay J.-C.; RT "A novel adapter protein employs a phosphotyrosine binding domain and RT exceptionally basic N-terminal domains to capture and localize an RT atypical protein kinase C: characterization of Caenorhabditis elegans RT C kinase adapter 1, a protein that avidly binds protein kinase C3."; RL J. Biol. Chem. 276:10463-10475(2001).' @obj = SPTR.new(data) end def test_ref res = {"RT" => "A novel adapter protein employs a phosphotyrosine binding domain and exceptionally basic N-terminal domains to capture and localize an atypical protein kinase C: characterization of Caenorhabditis elegans C kinase adapter 1, a protein that avidly binds protein kinase C3.", "RL" => "J. Biol. Chem. 276:10463-10475(2001).", "RA" => "Galinier A., Bleicher F., Negre D., Perriere G., Duclos B., Cozzone A.J., Cortay J.-C.", "RX" => {"MEDLINE" => nil, "DOI" => "10.1074/jbc.M008990200", "PubMed" => "11134024"}, "RC" => [{"Text" => "Bristol N2", "Token" => "STRAIN"}], "RN" => "[1]", "RP" => ["NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS A AND C)", "FUNCTION", "INTERACTION WITH PKC-3", "SUBCELLULAR LOCATION", "TISSUE SPECIFICITY", "DEVELOPMENTAL STAGE", "MUTAGENESIS OF PHE-175 AND PHE-221"], "RG" => ["The mouse genome sequencing consortium"]} assert_equal(res, @obj.ref.first) end def test_RN assert_equal("[1]", @obj.ref.first['RN']) end def test_RP assert_equal(["NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS A AND C)", "FUNCTION", "INTERACTION WITH PKC-3", "SUBCELLULAR LOCATION", "TISSUE SPECIFICITY", "DEVELOPMENTAL STAGE", "MUTAGENESIS OF PHE-175 AND PHE-221"], @obj.ref.first['RP']) end def test_RC assert_equal([{"Text"=>"Bristol N2", "Token"=>"STRAIN"}], @obj.ref.first['RC']) end def test_RX assert_equal({'MEDLINE' => nil, 'PubMed' => '11134024', 'DOI' => '10.1074/jbc.M008990200'}, @obj.ref.first['RX']) end def test_RG assert_equal(["The mouse genome sequencing consortium"], @obj.ref.first['RG']) end def test_RA assert_equal("Galinier A., Bleicher F., Negre D., Perriere G., Duclos B., Cozzone A.J., Cortay J.-C.", @obj.ref.first['RA']) end def test_RT assert_equal("A novel adapter protein employs a phosphotyrosine binding domain and exceptionally basic N-terminal domains to capture and localize an atypical protein kinase C: characterization of Caenorhabditis elegans C kinase adapter 1, a protein that avidly binds protein kinase C3.", @obj.ref.first['RT']) end def test_RL assert_equal("J. Biol. Chem. 276:10463-10475(2001).", @obj.ref.first['RL']) end end # class TestSPTRReferences # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel41.0 class TestSPTRSwissProtRel41_0 < Test::Unit::TestCase # Progress in the conversion of Swiss-Prot to mixed-case characters # Multiple RP lines def test_multiple_RP_lines data = "RN [1] RP SEQUENCE FROM N.A., SEQUENCE OF 23-42 AND 351-365, AND RP CHARACTERIZATION." sp = SPTR.new(data) assert_equal(['SEQUENCE FROM N.A.', 'SEQUENCE OF 23-42 AND 351-365', 'CHARACTERIZATION'], sp.ref.first['RP']) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel41.1 class TestSPTRSwissProtRel41_1 < Test::Unit::TestCase # New syntax of the CC line topic ALTERNATIVE PRODUCTS def test_alternative_products data = "ID TEST_ENTRY STANDARD; PRT; 393 AA. CC -!- ALTERNATIVE PRODUCTS: CC Event=Alternative promoter; CC Comment=Free text; CC Event=Alternative splicing; Named isoforms=2; CC Comment=Optional free text; CC Name=Isoform_1; Synonyms=Synonym_1; CC IsoId=Isoform_identifier_1; CC Sequence=Displayed; CC Note=Free text; CC Name=Isoform_2; Synonyms=Synonym_1, Synonym_2; CC IsoId=Isoform_identifier_1, Isoform_identifer_2; CC Sequence=VSP_identifier_1, VSP_identifier_2; CC Note=Free text; CC Event=Alternative initiation; CC Comment=Free text;" sp = SPTR.new(data) res = {"Comment" => "Free text", "Named isoforms" => "2", "Variants" => [{"Name" => "Isoform_1", "Synonyms" => ["Synonym_1"], "IsoId" => ["Isoform_identifier_1"], "Sequence" => ["Displayed"] }, {"Name" => "Isoform_2", "Synonyms" => ["Synonym_1", "Synonym_2"], "IsoId" => ["Isoform_identifier_1", "Isoform_identifer_2"], "Sequence" => ["VSP_identifier_1", "VSP_identifier_2"]}], "Event" => ["Alternative promoter"]} assert_equal(res, sp.cc('ALTERNATIVE PRODUCTS')) end def test_alternative_products_with_ft data = "ID TEST_ENTRY STANDARD; PRT; 393 AA. CC -!- ALTERNATIVE PRODUCTS: CC Event=Alternative splicing; Named isoforms=6; CC Name=1; CC IsoId=Q15746-4; Sequence=Displayed; CC Name=2; CC IsoId=Q15746-5; Sequence=VSP_000040; CC Name=3A; CC IsoId=Q15746-6; Sequence=VSP_000041, VSP_000043; CC Name=3B; CC IsoId=Q15746-7; Sequence=VSP_000040, VSP_000041, VSP_000042; CC Name=4; CC IsoId=Q15746-8; Sequence=VSP_000041, VSP_000042; CC Name=del-1790; CC IsoId=Q15746-9; Sequence=VSP_000044; FT VARSPLIC 437 506 VSGIPKPEVAWFLEGTPVRRQEGSIEVYEDAGSHYLCLLKA FT RTRDSGTYSCTASNAQGQVSCSWTLQVER -> G (in FT isoform 2 and isoform 3B). FT /FTId=VSP_004791. FT VARSPLIC 1433 1439 DEVEVSD -> MKWRCQT (in isoform 3A, FT isoform 3B and isoform 4). FT /FTId=VSP_004792. FT VARSPLIC 1473 1545 Missing (in isoform 4). FT /FTId=VSP_004793. FT VARSPLIC 1655 1705 Missing (in isoform 3A and isoform 3B). FT /FTId=VSP_004794. FT VARSPLIC 1790 1790 Missing (in isoform Del-1790). FT /FTId=VSP_004795." sp = SPTR.new(data) assert_equal({"Comment" => "", "Named isoforms" => "6", "Variants" => [{"IsoId"=>["Q15746-4"], "Name"=>"1", "Synonyms"=>[], "Sequence"=>["Displayed"]}, {"IsoId"=>["Q15746-5"], "Name"=>"2", "Synonyms"=>[], "Sequence"=>["VSP_000040"]}, {"IsoId"=>["Q15746-6"], "Name"=>"3A", "Synonyms"=>[], "Sequence"=>["VSP_000041", "VSP_000043"]}, {"IsoId"=>["Q15746-7"], "Name"=>"3B", "Synonyms"=>[], "Sequence"=>["VSP_000040", "VSP_000041", "VSP_000042"]}, {"IsoId"=>["Q15746-8"], "Name"=>"4", "Synonyms"=>[], "Sequence"=>["VSP_000041", "VSP_000042"]}, {"IsoId"=>["Q15746-9"], "Name"=>"del-1790", "Synonyms"=>[], "Sequence"=>["VSP_000044"]}], "Event"=>["Alternative splicing"]}, sp.cc('ALTERNATIVE PRODUCTS')) assert_equal([{"FTId"=>"VSP_004791", "From"=>437, "To"=>506, "Description"=>"VSGIPKPEVAWFLEGTPVRRQEGSIEVYEDAGSHYLCLLKA RTRDSGTYSCTASNAQGQVSCSWTLQVER -> G (in isoform 2 and isoform 3B).", "diff"=> ["VSGIPKPEVAWFLEGTPVRRQEGSIEVYEDAGSHYLCLLKARTRDSGTYSCTASNAQGQVSCSWTLQVER", "G"], "original"=> ["VARSPLIC", "437", "506", "VSGIPKPEVAWFLEGTPVRRQEGSIEVYEDAGSHYLCLLKA RTRDSGTYSCTASNAQGQVSCSWTLQVER -> G (in isoform 2 and isoform 3B).", "/FTId=VSP_004791."]}, {"FTId"=>"VSP_004792", "From"=>1433, "diff"=>["DEVEVSD", "MKWRCQT"], "To"=>1439, "original"=> ["VARSPLIC", "1433", "1439", "DEVEVSD -> MKWRCQT (in isoform 3A, isoform 3B and isoform 4).", "/FTId=VSP_004792."], "Description"=>"DEVEVSD -> MKWRCQT (in isoform 3A, isoform 3B and isoform 4)."}, {"FTId"=>"VSP_004793", "From"=>1473, "diff"=>[nil, nil], "To"=>1545, "original"=> ["VARSPLIC", "1473", "1545", "Missing (in isoform 4).", "/FTId=VSP_004793."], "Description"=>"Missing (in isoform 4)."}, {"FTId"=>"VSP_004794", "From"=>1655, "diff"=>[nil, nil], "To"=>1705, "original"=> ["VARSPLIC", "1655", "1705", "Missing (in isoform 3A and isoform 3B).", "/FTId=VSP_004794."], "Description"=>"Missing (in isoform 3A and isoform 3B)."}, {"FTId"=>"VSP_004795", "From"=>1790, "diff"=>[nil, nil], "To"=>1790, "original"=>["VARSPLIC", "1790", "1790", "Missing (in isoform Del-1790).", "/FTId=VSP_004795."], "Description"=>"Missing (in isoform Del-1790)."}], sp.ft['VARSPLIC']) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel41.10 class TestSPTRSwissProtRel41_10 < Test::Unit::TestCase # Reference Comment (RC) line topics may span lines def test_RC_lines data = "RN [1] RC STRAIN=AZ.026, DC.005, GA.039, GA2181, IL.014, IN.018, KY.172, KY2.37, RC LA.013, MN.001, MNb027, MS.040, NY.016, OH.036, TN.173, TN2.38, RC UT.002, AL.012, AZ.180, MI.035, VA.015, and IL2.17;" sp = SPTR.new(data) assert_equal([{"Text"=>"AZ.026", "Token"=>"STRAIN"}, {"Text"=>"DC.005", "Token"=>"STRAIN"}, {"Text"=>"GA.039", "Token"=>"STRAIN"}, {"Text"=>"GA2181", "Token"=>"STRAIN"}, {"Text"=>"IL.014", "Token"=>"STRAIN"}, {"Text"=>"IN.018", "Token"=>"STRAIN"}, {"Text"=>"KY.172", "Token"=>"STRAIN"}, {"Text"=>"KY2.37", "Token"=>"STRAIN"}, {"Text"=>"LA.013", "Token"=>"STRAIN"}, {"Text"=>"MN.001", "Token"=>"STRAIN"}, {"Text"=>"MNb027", "Token"=>"STRAIN"}, {"Text"=>"MS.040", "Token"=>"STRAIN"}, {"Text"=>"NY.016", "Token"=>"STRAIN"}, {"Text"=>"OH.036", "Token"=>"STRAIN"}, {"Text"=>"TN.173", "Token"=>"STRAIN"}, {"Text"=>"TN2.38", "Token"=>"STRAIN"}, {"Text"=>"UT.002", "Token"=>"STRAIN"}, {"Text"=>"AL.012", "Token"=>"STRAIN"}, {"Text"=>"AZ.180", "Token"=>"STRAIN"}, {"Text"=>"MI.035", "Token"=>"STRAIN"}, {"Text"=>"VA.015", "Token"=>"STRAIN"}, {"Text"=>"IL2.17", "Token"=>"STRAIN"}], sp.ref.first['RC']) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel41.20 class TestSPTRSwissProtRel41_20 < Test::Unit::TestCase # Case and wording change for submissions to Swiss-Prot in reference location (RL) lines def test_RL_lines data = "RL Submitted (MAY-2002) to the SWISS-PROT data bank." sp = SPTR.new(data) assert_equal('', sp.ref.first['RL']) end # New comment line (CC) topic ALLERGEN def test_CC_allergen data = "CC -!- ALLERGEN: Causes an allergic reaction in human. Binds IgE. It is a CC partially heat-labile allergen that may cause both respiratory and CC food-allergy symptoms in patients with the bird-egg syndrome." sp = SPTR.new(data) assert_equal(["Causes an allergic reaction in human. Binds IgE. It is a partially heat-labile allergen that may cause both respiratory and food-allergy symptoms in patients with the bird-egg syndrome."], sp.cc("ALLERGEN")) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel42.6 class TestSPTRSwissProtRel42_6 < Test::Unit::TestCase # New comment line (CC) topic RNA EDITING def test_CC_rna_editing data = "CC -!- RNA EDITING: Modified_positions=393, 431, 452, 495." sp = SPTR.new(data) assert_equal({"Note"=>"", "Modified_positions"=>['393', '431', '452', '495']}, sp.cc("RNA EDITING")) data = "CC -!- RNA EDITING: Modified_positions=59, 78, 94, 98, 102, 121; Note=The CC stop codon at position 121 is created by RNA editing. The nonsense CC codon at position 59 is modified to a sense codon." sp = SPTR.new(data) assert_equal({"Note"=>"The stop codon at position 121 is created by RNA editing. The nonsense codon at position 59 is modified to a sense codon.", "Modified_positions"=>['59', '78', '94', '98', '102', '121']}, sp.cc("RNA EDITING")) data = "CC -!- RNA EDITING: Modified_positions=Not_applicable; Note=Some CC positions are modified by RNA editing via nucleotide insertion or CC deletion. The initiator methionine is created by RNA editing." sp = SPTR.new(data) assert_equal({'Modified_positions' => ['Not_applicable'], 'Note' => "Some positions are modified by RNA editing via nucleotide insertion or deletion. The initiator methionine is created by RNA editing."}, sp.cc("RNA EDITING")) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel1_12 class TestSPTRUniProtRel1_12 < Test::Unit::TestCase # Digital Object Identifier (DOI) in the RX line def test_DOI_in_RX_line # RX [MEDLINE=Medline_identifier; ][PubMed=Pubmed_identifier; ][DOI=Digital_object_identifier;] data = " RN [1] RX MEDLINE=97291283; PubMed=9145897; DOI=10.1007/s00248-002-2038-4;" sp = SPTR.new(data) assert_equal({'MEDLINE' => '97291283', 'PubMed' => '9145897', 'DOI' => '10.1007/s00248-002-2038-4'}, sp.ref.first['RX']) end # New line type: RG (Reference Group) def test_RG_line data = " RN [1] RG The C. elegans sequencing consortium; RG The Brazilian network for HIV isolation and characterization;" sp = SPTR.new(data) assert_equal(['The C. elegans sequencing consortium', 'The Brazilian network for HIV isolation and characterization'], sp.ref.first['RG']) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel2_0 class TestSPTRUniProtRel2_0 < Test::Unit::TestCase # New format for the GN (Gene Name) line # GN Name=; Synonyms=[, ...]; OrderedLocusNames=[, ...]; # xsGN ORFNames=[, ...]; def test_GN_line data = "GN Name=atpG; Synonyms=uncG, papC; GN OrderedLocusNames=b3733, c4659, z5231, ECs4675, SF3813, S3955;" sp = SPTR.new(data) assert_equal([{:orfs => [], :loci => ["b3733", "c4659", "z5231", "ECs4675", "SF3813", "S3955"], :name => "atpG", :synonyms => ["uncG", "papC"]}], sp.gn) data = "GN ORFNames=SPAC1834.11c;" sp = SPTR.new(data) assert_equal([{:orfs => ['SPAC1834.11c'], :loci => [], :name => '', :synonyms => []}], sp.gn) data = "GN Name=cysA1; Synonyms=cysA; OrderedLocusNames=Rv3117, MT3199; GN ORFNames=MTCY164.27; GN and GN Name=cysA2; OrderedLocusNames=Rv0815c, MT0837; ORFNames=MTV043.07c;" sp = SPTR.new(data) assert_equal([{:orfs => ["MTCY164.27"], :loci => ["Rv3117", "MT3199"], :name => "cysA1", :synonyms => ["cysA"]}, {:orfs => ["MTV043.07c"], :loci => ["Rv0815c", "MT0837"], :name => "cysA2", :synonyms => []}], sp.gn) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel2_1 class TestSPTRUniProtRel2_1 < Test::Unit::TestCase # Format change in the comment line (CC) topic: MASS SPECTROMETRY def test_CC_mass_spectrometry data = "CC -!- MASS SPECTROMETRY: MW=32875.93; METHOD=MALDI; CC RANGE=1-284 (Isoform 3); NOTE=Ref.6." sp = SPTR.new(data) assert_equal([{"RANGE"=>"1-284", "METHOD"=>"MALDI", "MW_ERR"=>nil, "NOTE"=>"Ref.6", "MW"=>"32875.93"}], sp.cc("MASS SPECTROMETRY")) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel2_3 class TestSPTRUniProtRel2_3 < Test::Unit::TestCase # New RL line structure for electronic publications def test_RL_line data = "RL Submitted (XXX-YYYY) to the HIV data bank." sp = SPTR.new(data) assert_equal('', sp.ref.first['RL']) end # Format change in the cross-reference to PDB def test_DR_PDB data = "DR PDB; 1NB3; X-ray; A/B/C/D=116-335, P/R/S/T=98-105." sp = SPTR.new(data) assert_equal([["1NB3", "X-ray", "A/B/C/D=116-335, P/R/S/T=98-105"]], sp.dr['PDB']) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel3_4 class TestSPTRUniProtRel3_4 < Test::Unit::TestCase # Changes in the RP (Reference Position) line def test_RP_line data = " RN [1] RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), PROTEIN SEQUENCE RP OF 108-131; 220-231 AND 349-393, CHARACTERIZATION, AND MUTAGENESIS OF RP ARG-336." sp = SPTR.new(data) assert_equal(['NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1)', 'PROTEIN SEQUENCE OF 108-131; 220-231 AND 349-393', 'CHARACTERIZATION', 'MUTAGENESIS OF ARG-336'], sp.ref.first['RP']) data = " RN [1] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA / MRNA]." sp = SPTR.new(data) assert_equal(['NUCLEOTIDE SEQUENCE [GENOMIC DNA / MRNA]'], sp.ref.first['RP']) end # New comment line (CC) topic: BIOPHYSICOCHEMICAL PROPERTIES def test_CC_biophysiochemical_properties data = "CC -!- BIOPHYSICOCHEMICAL PROPERTIES: CC Absorption: CC Abs(max)=395 nm; CC Note=Exhibits a smaller absorbance peak at 470 nm. The CC fluorescence emission spectrum peaks at 509 nm with a shoulder CC at 540 nm;" sp = SPTR.new(data) assert_equal({"Redox potential" => "", "Temperature dependence" => "", "Kinetic parameters" => {}, "Absorption" => {"Note" => "Exhibits a smaller absorbance peak at 470 nm. The fluorescence emission spectrum peaks at 509 nm with a shoulder at 540 nm", "Abs(max)" => "395 nm"}, "pH dependence" => ""}, sp.cc("BIOPHYSICOCHEMICAL PROPERTIES")) data = "CC -!- BIOPHYSICOCHEMICAL PROPERTIES: CC Kinetic parameters: CC KM=62 mM for glucose; CC KM=90 mM for maltose; CC Vmax=0.20 mmol/min/mg enzyme with glucose as substrate; CC Vmax=0.11 mmol/min/mg enzyme with maltose as substrate; CC Note=Acetylates glucose, maltose, mannose, galactose, and CC fructose with a decreasing relative rate of 1, 0.55, 0.20, 0.07, CC 0.04;" sp = SPTR.new(data) assert_equal({"Redox potential" => "", "Temperature dependence" => "", "Kinetic parameters" => {"KM" => "62 mM for glucose; KM=90 mM for maltose", "Note" => "Acetylates glucose, maltose, mannose, galactose, and fructose with a decreasing relative rate of 1, 0.55, 0.20, 0.07, 0.04", "Vmax" => "0.20 mmol/min/mg enzyme with glucose as substrate"}, "Absorption" => {}, "pH dependence" => ""}, sp.cc("BIOPHYSICOCHEMICAL PROPERTIES")) data = "CC -!- BIOPHYSICOCHEMICAL PROPERTIES: CC Kinetic parameters: CC KM=1.76 uM for chlorophyll; CC pH dependence: CC Optimum pH is 7.5. Active from pH 5.0 to 9.0; CC Temperature dependence: CC Optimum temperature is 45 degrees Celsius. Active from 30 to 60 CC degrees Celsius;" sp = SPTR.new(data) assert_equal({"Redox potential" => "", "Temperature dependence" => "Optimum temperature is 45 degrees Celsius. Active from 30 to 60 degrees Celsius", "Kinetic parameters" => {}, "Absorption" => {}, "pH dependence" => "Optimum pH is 7.5. Active from pH 5.0 to 9.0"}, sp.cc("BIOPHYSICOCHEMICAL PROPERTIES")) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel3_5 class TestSPTRUniProtRel3_5 < Test::Unit::TestCase # Extension of the Swiss-Prot entry name format def test_entry_name_format # TBD end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel4_0 class TestSPTRUniProtRel4_0 < Test::Unit::TestCase # Extension of the TrEMBL entry name format # Change of the entry name in many Swiss-Prot entries # New comment line (CC) topic: INTERACTION def test_CC_interaction data = "CC -!- INTERACTION: CC P11450:fcp3c; NbExp=1; IntAct=EBI-126914, EBI-159556;" sp = SPTR.new(data) assert_equal([{"SP_Ac" => "P11450", "identifier" => "fcp3c", "optional_identifier" => nil, "NbExp" => "1", "IntAct" => ["EBI-126914", "EBI-159556"]}], sp.cc("INTERACTION")) end def test_CC_interaction_isoform data = "CC -!- INTERACTION: CC Q9W1K5-1:cg11299; NbExp=1; IntAct=EBI-133844, EBI-212772;" sp = SPTR.new(data) assert_equal([{"SP_Ac" => 'Q9W1K5-1', "identifier" => 'cg11299', "optional_identifier" => nil, "NbExp" => "1", "IntAct" => ["EBI-133844", "EBI-212772"]}], sp.cc("INTERACTION")) end def test_CC_interaction_no_gene_name data = "CC -!- INTERACTION: CC Q8NI08:-; NbExp=1; IntAct=EBI-80809, EBI-80799;" sp = SPTR.new(data) assert_equal([{"SP_Ac" => 'Q8NI08', "identifier" => '-', "optional_identifier" => nil, "NbExp" => "1", "IntAct" => ["EBI-80809", "EBI-80799"]}], sp.cc("INTERACTION")) end def test_CC_interaction_self_association data = "ID TEST_ENTRY STANDARD; PRT; 393 AA. CC -!- INTERACTION: CC Self; NbExp=1; IntAct=EBI-123485, EBI-123485;" sp = SPTR.new(data) assert_equal([{"SP_Ac" => 'TEST_ENTRY', "identifier" => 'TEST_ENTRY', "optional_identifier" => nil, "NbExp" => "1", "IntAct" => ["EBI-123485", "EBI-123485"]}], sp.cc("INTERACTION")) end def test_CC_interaction_The_source_organisms_of_the_interacting_proteins_are_different data = "CC -!- INTERACTION: CC Q8C1S0:2410018m14rik (xeno); NbExp=1; IntAct=EBI-394562, EBI-398761;" sp = SPTR.new(data) assert_equal([{"SP_Ac" => 'Q8C1S0', "identifier" => '2410018m14rik', "optional_identifier" => '(xeno)', "NbExp" => "1", "IntAct" => ["EBI-394562", "EBI-398761"]}], sp.cc("INTERACTION")) end def test_CC_interaction_Different_isoforms_of_the_current_protein_are_shown_to_interact_with_the_same_protein data = "CC -!- INTERACTION: CC P51617:irak1; NbExp=1; IntAct=EBI-448466, EBI-358664; CC P51617:irak1; NbExp=1; IntAct=EBI-448472, EBI-358664;" sp = SPTR.new(data) assert_equal([{"SP_Ac" => "P51617", "identifier" => "irak1", "optional_identifier" => nil, "NbExp" => "1", "IntAct" => ["EBI-448466", "EBI-358664"]}, {"SP_Ac" => "P51617", "identifier" => "irak1", "optional_identifier" => nil, "NbExp" => "1", "IntAct" => ["EBI-448472", "EBI-358664"]}], sp.cc("INTERACTION")) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel5_0 class TestSPTRUniProtRel5_0 < Test::Unit::TestCase # Format change in the DR line # DR DATABASE_IDENTIFIER; PRIMARY_IDENTIFIER; SECONDARY_IDENTIFIER[; TERTIARY_IDENTIFIER][; QUATERNARY_IDENTIFIER]. def test_DR_line data = " DR EMBL; M68939; AAA26107.1; -; Genomic_DNA. DR EMBL; U56386; AAB72034.1; -; mRNA." sp = SPTR.new(data) assert_equal([["M68939", "AAA26107.1", "-", "Genomic_DNA"], ["U56386", "AAB72034.1", "-", "mRNA"]], sp.dr['EMBL']) assert_equal([{" "=>"-", "Version"=>"AAA26107.1", "Accession"=>"M68939", "Molecular Type"=>"Genomic_DNA"}, {" "=>"-", "Version"=>"AAB72034.1", "Accession"=>"U56386", "Molecular Type"=>"mRNA"}], sp.dr('EMBL')) end # New feature (FT) keys and redefinition of existing FT keys end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel5_4 class TestSPTRUniProtRel5_4 < Test::Unit::TestCase # Multiple comment line (CC) topics COFACTOR def test_multiple_cofactors data = "CC -!- COFACTOR: Binds 1 2Fe-2S cluster per subunit (By similarity). CC -!- COFACTOR: Binds 1 Fe(2+) ion per subunit (By similarity)." sp = SPTR.new(data) assert_equal(["Binds 1 2Fe-2S cluster per subunit (By similarity).", "Binds 1 Fe(2+) ion per subunit (By similarity)."], sp.cc['COFACTOR']) assert_equal(["Binds 1 2Fe-2S cluster per subunit (By similarity).", "Binds 1 Fe(2+) ion per subunit (By similarity)."], sp.cc('COFACTOR')) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel6_0 class TestSPTRUniProtRel6_0 < Test::Unit::TestCase # Changes in the OG (OrGanelle) line def test_OG_line data = "OG Plastid." sp = SPTR.new(data) assert_equal(['Plastid'], sp.og) data = "OG Plastid; Apicoplast." sp = SPTR.new(data) assert_equal(['Plastid', 'Apicoplast'], sp.og) data = "OG Plastid; Chloroplast." sp = SPTR.new(data) assert_equal(['Plastid', 'Chloroplast'], sp.og) data = "OG Plastid; Cyanelle." sp = SPTR.new(data) assert_equal(['Plastid', 'Cyanelle'], sp.og) data = "OG Plastid; Non-photosynthetic plastid." sp = SPTR.new(data) assert_equal(['Plastid', 'Non-photosynthetic plastid'], sp.og) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel6_1 class TestSPTRUniProtRel6_1 < Test::Unit::TestCase # Annotation changes concerning the feature key METAL def test_FT_metal old_data = "FT METAL 61 61 Copper and zinc." sp = SPTR.new(old_data) assert_equal([{'From' => 61, 'To' => 61, 'Description' => 'Copper and zinc.', 'FTId' =>'', 'diff' => [], 'original' => ["METAL", "61", "61", "Copper and zinc.", ""]}], sp.ft['METAL']) new_data = "FT METAL 61 61 Copper. FT METAL 61 61 Zinc." sp = SPTR.new(new_data) assert_equal([{"From" => 61, "To" => 61, "Description" => "Copper.", "FTId" => "", "diff" => [], "original" => ["METAL", "61", "61", "Copper.", ""]}, {"From" => 61, "To" => 61, "Description" => "Zinc.", "FTId" => "", "diff" => [], "original" => ["METAL", "61", "61", "Zinc.", ""]}], sp.ft['METAL']) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel6_5 class TestSPTRUniProtRel6_5 < Test::Unit::TestCase # Changes in the keywlist.txt file # * Modification of the HI line format: def test_HI_line # HI Category: Keyword_1; ...; Keyword_n; Described_Keyword. # The first term listed in an HI line is a category. It is followed by a hierarchical list of keywords of that category and ends with the described keyword. There can be more than one HI line of the same category in one keyword entry. data = "HI Molecular function: Ionic channel; Calcium channel. HI Biological process: Transport; Ion transport; Calcium transport; Calcium channel. HI Ligand: Calcium; Calcium channel." sp = SPTR.new(data) assert_equal([{'Category' => 'Molecular function', 'Keywords' => ['Ionic channel'], 'Keyword' => 'Calcium channel'}, {'Category' => 'Biological process', 'Keywords' => ['Transport', 'Ion transport', 'Calcium transport'], 'Keyword' => 'Calcium channel'}, {'Category' => 'Ligand', 'Keywords' => ['Calcium'], 'Keyword' => 'Calcium channel'}], sp.hi) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel7.0 class TestSPTRUniProtRel7_0 < Test::Unit::TestCase # Changes concerning dates and versions numbers (DT lines) def test_DT_line up_sp_data = "DT 01-JAN-1998, integrated into UniProtKB/Swiss-Prot. DT 15-OCT-2001, sequence version 3. DT 01-APR-2004, entry version 14." sp = SPTR.new(up_sp_data) assert_equal({"sequence" => "15-OCT-2001, sequence version 3.", "annotation" => "01-APR-2004, entry version 14.", "created" => "01-JAN-1998, integrated into UniProtKB/Swiss-Prot."}, sp.dt) up_tr_data = "DT 01-FEB-1999, integrated into UniProtKB/TrEMBL. DT 15-OCT-2000, sequence version 2. DT 15-DEC-2004, entry version 5." sp = SPTR.new(up_tr_data) assert_equal({"sequence" => "15-OCT-2000, sequence version 2.", "annotation" => "15-DEC-2004, entry version 5.", "created" => "01-FEB-1999, integrated into UniProtKB/TrEMBL."}, sp.dt) end # Addition of a feature (FT) key CHAIN over the whole sequence length # Changes concerning the copyright statement def test_CC_copyright_statement data = "CC ----------------------------------------------------------------------- CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms CC Distributed under the Creative Commons Attribution-NoDerivs License CC -----------------------------------------------------------------------" sp = SPTR.new(data) assert_equal({}, sp.cc) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel7.6 class TestSPTRUniProtRel7_6 < Test::Unit::TestCase # Sequences with over 10000 amino acids in UniProtKB/Swiss-Prot def test_10000aa entry_id = 'Q09165' data = ["SQ SEQUENCE 393 AA; 43653 MW; AD5C149FD8106131 CRC64;\n", " MEEPQSDPSV EPPLSQETFS DLWKLLPENN VLSPLPSQAM DDLMLSPDDI EQWFTEDPGP\n" * 200, "//\n"].join sp = SPTR.new(data) assert(12000, sp.seq.size) end end # Changes in http://br.expasy.org/sprot/relnotes/sp_news.html#rel8.0 class TestSPTRUniProtRel8_0 < Test::Unit::TestCase # Replacement of the feature key VARSPLIC by VAR_SEQ def test_FT_VER_SEQ data = "FT VAR_SEQ 1 34 Missing (in isoform 3). FT /FTId=VSP_004099." sp = SPTR.new(data) res = [{'From' => 1, 'To' => 34, 'Description' => 'Missing (in isoform 3).', 'diff' => ['', nil], 'FTId' => 'VSP_004099', 'original' => ["VAR_SEQ", "1", "34", "Missing (in isoform 3).", "/FTId=VSP_004099."]}] assert_equal(res, sp.ft('VAR_SEQ')) end # Syntax modification of the comment line (CC) topic ALTERNATIVE PRODUCTS def test_CC_alternative_products # CC -!- ALTERNATIVE PRODUCTS: # CC Event=Event(, Event)*; Named isoforms=Number_of_isoforms; # (CC Comment=Free_text;)? # (CC Name=Isoform_name;( Synonyms=Synonym(, Synonym)*;)? # CC IsoId=Isoform_identifier(, Isoform_identifer)*; # CC Sequence=(Displayed|External|Not described|Feature_identifier(, Feature_identifier)*); # (CC Note=Free_text;)?)+ # Note: Variable values are represented in italics. Perl-style multipliers indicate whether a pattern (as delimited by parentheses) is optional (?), may occur 0 or more times (*), or 1 or more times (+). Alternative values are separated by a pipe symbol (|). data = "CC -!- ALTERNATIVE PRODUCTS: CC Event=Alternative splicing, Alternative initiation; Named isoforms=3; CC Comment=Isoform 1 and isoform 2 arise due to the use of two CC alternative first exons joined to a common exon 2 at the same CC acceptor site but in different reading frames, resulting in two CC completely different isoforms; CC Name=1; Synonyms=p16INK4a; CC IsoId=O77617-1; Sequence=Displayed; CC Name=3; CC IsoId=O77617-2; Sequence=VSP_004099; CC Note=Produced by alternative initiation at Met-35 of isoform 1; CC Name=2; Synonyms=p19ARF; CC IsoId=O77618-1; Sequence=External; FT VAR_SEQ 1 34 Missing (in isoform 3). FT /FTId=VSP_004099." sp = SPTR.new(data) assert_equal({"Comment" => "Isoform 1 and isoform 2 arise due to the use of two alternative first exons joined to a common exon 2 at the same acceptor site but in different reading frames, resulting in two completely different isoforms", "Named isoforms" => "3", "Variants" => [{"IsoId" => ["O77617-1"], "Name" => "1", "Synonyms" => ["p16INK4a"], "Sequence" => ["Displayed"]}, {"IsoId" => ["O77617-2"], "Name" => "3", "Synonyms" => [], "Sequence" => ["VSP_004099"]}, {"IsoId" => ["O77618-1"], "Name" => "2", "Synonyms" => ["p19ARF"], "Sequence" => ["External"]}], "Event" => ["Alternative splicing", "Alternative initiation"]}, sp.cc("ALTERNATIVE PRODUCTS")) assert_equal([{"From" => 1, "To" => 34, "Description"=>"Missing (in isoform 3).", "FTId" => "VSP_004099", "diff" => ["", nil], "original"=> ["VAR_SEQ", "1", "34", "Missing (in isoform 3).", "/FTId=VSP_004099."]}], sp.ft("VAR_SEQ")) end # Replacement of the comment line (CC) topic DATABASE by WEB RESOURCE def test_CC_web_resource # CC -!- DATABASE: NAME=ResourceName[; NOTE=FreeText][; WWW=WWWAddress][; FTP=FTPAddress]. # CC -!- WEB RESOURCE: NAME=ResourceName[; NOTE=FreeText]; URL=WWWAddress. # The length of these lines may exceed 75 characters because long URL addresses are not wrapped into multiple lines. assert(true) end # Introduction of the new line type OH (Organism Host) for viral hosts def test_OH_lines data = 'OS Tomato black ring virus (strain E) (TBRV). OC Viruses; ssRNA positive-strand viruses, no DNA stage; Comoviridae; OC Nepovirus; Subgroup B. OX NCBI_TaxID=12277; OH NCBI_TaxID=4681; Allium porrum (Leek). OH NCBI_TaxID=4045; Apium graveolens (Celery). OH NCBI_TaxID=161934; Beta vulgaris (Sugar beet). OH NCBI_TaxID=38871; Fraxinus (ash trees). OH NCBI_TaxID=4236; Lactuca sativa (Garden lettuce). OH NCBI_TaxID=4081; Lycopersicon esculentum (Tomato). OH NCBI_TaxID=39639; Narcissus pseudonarcissus (Daffodil). OH NCBI_TaxID=3885; Phaseolus vulgaris (Kidney bean) (French bean). OH NCBI_TaxID=35938; Robinia pseudoacacia (Black locust). OH NCBI_TaxID=23216; Rubus (bramble). OH NCBI_TaxID=4113; Solanum tuberosum (Potato). OH NCBI_TaxID=13305; Tulipa. OH NCBI_TaxID=3603; Vitis.' res = [{'NCBI_TaxID' => '4681', 'HostName' => 'Allium porrum (Leek)'}, {'NCBI_TaxID' => '4045', 'HostName' => 'Apium graveolens (Celery)'}, {'NCBI_TaxID' => '161934', 'HostName' => 'Beta vulgaris (Sugar beet)'}, {'NCBI_TaxID' => '38871', 'HostName' => 'Fraxinus (ash trees)'}, {'NCBI_TaxID' => '4236', 'HostName' => 'Lactuca sativa (Garden lettuce)'}, {'NCBI_TaxID' => '4081', 'HostName' => 'Lycopersicon esculentum (Tomato)'}, {'NCBI_TaxID' => '39639', 'HostName' => 'Narcissus pseudonarcissus (Daffodil)'}, {'NCBI_TaxID' => '3885', 'HostName' => 'Phaseolus vulgaris (Kidney bean) (French bean)'}, {'NCBI_TaxID' => '35938', 'HostName' => 'Robinia pseudoacacia (Black locust)'}, {'NCBI_TaxID' => '23216', 'HostName' => 'Rubus (bramble)'}, {'NCBI_TaxID' => '4113', 'HostName' => 'Solanum tuberosum (Potato)'}, {'NCBI_TaxID' => '13305', 'HostName' => 'Tulipa'}, {'NCBI_TaxID' => '3603', 'HostName' => 'Vitis'}] sp = SPTR.new(data) assert_equal(res, sp.oh) end def test_OH_line_exception data = "ID TEST_ENTRY STANDARD; PRT; 393 AA. OH NCBI_TaxID=23216x: Rubus (bramble)." sp = SPTR.new(data) assert_raise(ArgumentError) { sp.oh } end end class TestOSLine < Test::Unit::TestCase def test_uncapitalized_letter_Q32725_9POAL data = "OS unknown cyperaceous sp.\n" sp = SPTR.new(data) assert_equal('unknown cyperaceous sp.', sp.os.first['os']) end def test_period_trancation_O63147 data = "OS Hippotis sp. Clark and Watts 825.\n" sp = SPTR.new(data) assert_equal('Hippotis sp. Clark and Watts 825.', sp.os.first['os']) end end end # module Bio