Sha256: 33645734e20eed633915d63298e271dd6c1621a0790cb8e10586e6636aae5dd0
Contents?: true
Size: 1.5 KB
Versions: 7
Compression:
Stored size: 1.5 KB
Contents
require "dnn" require "dnn/datasets/mnist" # If you use numo/linalg then please uncomment out. # require "numo/linalg/autoloader" include DNN::Models include DNN::Layers include DNN::Regularizers include DNN::Optimizers include DNN::Losses EPOCHS = 3 BATCH_SIZE = 128 L2_LAMBDA = 0.01 x_train, y_train = DNN::MNIST.load_train x_test, y_test = DNN::MNIST.load_test x_train = x_train.reshape(x_train.shape[0], 784) x_test = x_test.reshape(x_test.shape[0], 784) x_train = Numo::SFloat.cast(x_train) / 255 x_test = Numo::SFloat.cast(x_test) / 255 y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat) y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat) class MLP < Model def initialize super # Set L2 regularizer(weight decay) for weight and bias. @d1 = Dense.new(256, weight_regularizer: L2.new(L2_LAMBDA), bias_regularizer: L2.new(L2_LAMBDA)) @d2 = Dense.new(256, weight_regularizer: L2.new(L2_LAMBDA), bias_regularizer: L2.new(L2_LAMBDA)) @d3 = Dense.new(10, weight_regularizer: L2.new(L2_LAMBDA), bias_regularizer: L2.new(L2_LAMBDA)) @bn1 = BatchNormalization.new @bn2 = BatchNormalization.new end def forward(x) x = InputLayer.new(784).(x) x = @d1.(x) x = @bn1.(x) x = ReLU.(x) x = @d2.(x) x = @bn2.(x) x = ReLU.(x) x = @d3.(x) x end end model = MLP.new model.setup(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, EPOCHS, batch_size: BATCH_SIZE, test: [x_test, y_test])
Version data entries
7 entries across 7 versions & 1 rubygems