#
# = Mathematical Functions
# Contents:
# 1. {Mathematical Constants}[link:rdoc/math_rdoc.html#1]
#    1. {Infinities and Not-a-number}[link:rdoc/math_rdoc.html#2]
#    1. {Constants}[link:rdoc/math_rdoc.html#2.1]
# 1. {Module functions}[link:rdoc/math_rdoc.html#2.2]
# 1. {Elementary Functions}[link:rdoc/math_rdoc.html#3]
# 1. {Small Integer Powers}[link:rdoc/math_rdoc.html#4]
# 1. {Testing the Sign of Numbers}[link:rdoc/math_rdoc.html#5]
# 1. {Testing for Odd and Even Numbers}[link:rdoc/math_rdoc.html#6]
# 1. {Maximum and Minimum functions}[link:rdoc/math_rdoc.html#7]
# 1. {Approximate Comparison of Floating Point Numbers}[link:rdoc/math_rdoc.html#8]
#
# == {}[link:index.html"name="1] Mathematical Constants
# ---
# * GSL::M_E
#
#   The base of exponentials, e
# ---
# * GSL::M_LOG2E
#
#   The base-2 logarithm of e, log_2(e)
# ---
# * GSL::M_LOG10E
#
#   The base-10 logarithm of e, log_10(e)
# ---
# * GSL::M_SQRT2
#
#   The square root of two, sqrt(2)
# ---
# * GSL::M_SQRT1_2
#
#   The square root of one-half, sqrt(1/2)
# ---
# * GSL::M_SQRT3
#
#   The square root of three, sqrt(3)
# ---
# * GSL::M_PI
#
#   The constant pi
# ---
# * GSL::M_PI_2
#
#   Pi divided by two
# ---
# * GSL::M_PI_4
#
#   Pi divided by four
# ---
# * GSL::M_SQRTPI
#
#   The square root of pi
# ---
# * GSL::M_2_SQRTPI
#
#   Two divided by the square root of pi
# ---
# * GSL::M_1_PI
#
#   The reciprocal of pi, 1/pi
# ---
# * GSL::M_2_PI
#
#   Twice the reciprocal of pi, 2/pi
# ---
# * GSL::M_LN10
#
#   The natural logarithm of ten, ln(10)
# ---
# * GSL::M_LN2
#
#   The natural logarithm of ten, ln(2)
# ---
# * GSL::M_LNPI
#
#   The natural logarithm of ten, ln(pi)
# ---
# * GSL::M_EULER
#
#   Euler's constant
#
# == {}[link:index.html"name="2] Infinities and Not-a-number
#
# === {}[link:index.html"name="2.1] Constants
# ---
# * GSL::POSINF
#
#   The IEEE representation of positive infinity, 
#   computed from the expression +1.0/0.0.
# ---
# * GSL::NEGINF
#
#   The IEEE representation of negative infinity, 
#   computed from the expression -1.0/0.0.
# ---
# * GSL::NAN
#
#   The IEEE representation of the Not-a-Number symbol,
#   computed from the ratio 0.0/0.0.
#
# === {}[link:index.html"name="2.2] Module functions
# ---
# * GSL::isnan(x)
#
#   This returns 1 if <tt>x</tt> is not-a-number.
# ---
# * GSL::isnan?(x)
#
#   This returns <tt>true</tt> if <tt>x</tt>  is not-a-number, and <tt>false</tt> otherwise.
# ---
# * GSL::isinf(x)
#
#   This returns +1 if <tt>x</tt>  is positive infinity, 
#   -1 if <tt>x</tt>  is negative infinity and 0 otherwise.
#   NOTE: In Darwin9.5.0-gcc4.0.1, this method returns 1 for -inf.
# ---
# * GSL::isinf?(x)
#
#   This returns <tt>true</tt> if <tt>x</tt> is positive or negative infinity, 
#   and <tt>false</tt> otherwise.
# ---
# * GSL::finite(x)
#
#   This returns 1 if <tt>x</tt> is a real number, 
#   and 0 if it is infinite or not-a-number.
# ---
# * GSL::finite?(x)
#
#   This returns <tt>true</tt> if <tt>x</tt> is a real number, 
#   and <tt>false</tt> if it is infinite or not-a-number.
#
# == {}[link:index.html"name="3] Elementary Functions
# ---
# * GSL::log1p(x)
#
#   This method computes the value of log(1+x) 
#   in a way that is accurate for small <tt>x</tt>. It provides an alternative 
#   to the BSD math function log1p(x).
# ---
# * GSL::expm1(x)
#
#   This method computes the value of exp(x)-1 
#   in a way that is accurate for small <tt>x</tt>. It provides an alternative 
#   to the BSD math function expm1(x).
# ---
# * GSL::hypot(x, y)
#
#   This method computes the value of sqrt{x^2 + y^2} in a way that 
#   avoids overflow.
# ---
# * GSL::hypot3(x, y, z) 
#
#   Computes the value of sqrt{x^2 + y^2 + z^2} in a way that avoids overflow. 
# ---
# * GSL::acosh(x)
#
#   This method computes the value of arccosh(x). 
# ---
# * GSL::asinh(x)
#
#   This method computes the value of arcsinh(x). 
# ---
# * GSL::atanh(x)
#
#   This method computes the value of arctanh(x). 
#
#   These methods above can take argument <tt>x</tt> of
#   Integer, Float, Array, Vector or Matrix.
#
# ---
# * GSL::ldexp(x)
#
#   This method computes the value of x * 2^e. 
# ---
# * GSL::frexp(x)
#
#   This method splits the number <tt>x</tt> into its normalized fraction 
#   f and exponent e, such that x = f * 2^e and 0.5 <= f < 1. 
#   The method returns f and the exponent e as an array, [f, e]. 
#   If <tt>x</tt> is zero, both f and e are set to zero. 
#
# == {}[link:index.html"name="4] Small Integer Powers
# ---
# * GSL::pow_int(x, n)
#
#   This routine computes the power <tt>x^n</tt> for integer <tt>n</tt>. 
#   The power is computed efficiently -- for example, x^8 is computed as 
#   ((x^2)^2)^2, requiring only 3 multiplications. 
#
# ---
# * GSL::pow_2(x)
# * GSL::pow_3(x)
# * GSL::pow_4(x)
# * GSL::pow_5(x)
# * GSL::pow_6(x)
# * GSL::pow_7(x)
# * GSL::pow_8(x)
# * GSL::pow_9(x)
#
#   These methods can be used to compute small integer powers x^2, x^3, etc. 
#   efficiently.
#
# == {}[link:index.html"name="5] Testing the Sign of Numbers
# ---
# * GSL::SIGN(x)
# * GSL::sign(x)
#
#   Return the sign of <tt>x</tt>. 
#   It is defined as ((x) >= 0 ? 1 : -1). 
#   Note that with this definition the sign of zero is positive 
#   (regardless of its IEEE sign bit).
#
# == {}[link:index.html"name="6] Testing for Odd and Even Numbers
# ---
# * GSL::is_odd(n)
# * GSL::IS_ODD(n)
#
#   Evaluate to 1 if <tt>n</tt> is odd and 0 if <tt>n</tt> is even. 
#   The argument <tt>n</tt> must be of Fixnum type.
# ---
# * GSL::is_odd?(n)
# * GSL::IS_ODD?(n)
#
#   Return <tt>true</tt> if <tt>n</tt> is odd and <tt>false</tt> if even.
# ---
# * GSL::is_even(n)
# * GSL::IS_EVEN(n)
#
#   Evaluate to 1 if <tt>n</tt> is even and 0 if <tt>n</tt> is odd. 
#   The argument <tt>n</tt> must be of Fixnum type.
# ---
# * GSL::is_even?(n)
# * GSL::IS_even?(n)
#
#   Return <tt>true</tt> if <tt>n</tt> is even and <tt>false</tt> if odd.
#
# == {}[link:index.html"name="7] Maximum and Minimum functions
# ---
# * GSL::max(a, b)
# * GSL::MAX(a, b)
# * GSL::min(a, b)
# * GSL::MIN(a, b)
#
#   
# == {}[link:index.html"name="8] Approximate Comparison of Floating Point Numbers
# ---
# * GSL::fcmp(a, b, epsilon = 1e-10)
#
#   This method determines whether <tt>x</tt> and <tt>y</tt> are approximately equal to a 
#   relative accuracy <tt>epsilon</tt>.
# ---
# * GSL::equal?(a, b, epsilon = 1e-10)
#
#
# == {}[link:index.html"name="9] Module Constants
# ---
# * GSL::VERSION
#
#   GSL version
#
# ---
# * GSL::RB_GSL_VERSION
# * GSL::RUBY_GSL_VERSION
#
#   Ruby/GSL version
#
# {prev}[link:rdoc/ehandling_rdoc.html]
# {next}[link:rdoc/complex_rdoc.html]
#
# {Reference index}[link:rdoc/ref_rdoc.html]
# {top}[link:index.html]
#
#