;;;; match.scm -- portable hygienic pattern matcher -*- coding: utf-8 -*- ;; ;; This code is written by Alex Shinn and placed in the ;; Public Domain. All warranties are disclaimed. ;;> @example-import[(srfi 9)] ;;> This is a full superset of the popular @hyperlink[ ;;> "http://www.cs.indiana.edu/scheme-repository/code.match.html"]{match} ;;> package by Andrew Wright, written in fully portable @scheme{syntax-rules} ;;> and thus preserving hygiene. ;;> The most notable extensions are the ability to use @emph{non-linear} ;;> patterns - patterns in which the same identifier occurs multiple ;;> times, tail patterns after ellipsis, and the experimental tree patterns. ;;> @subsubsection{Patterns} ;;> Patterns are written to look like the printed representation of ;;> the objects they match. The basic usage is ;;> @scheme{(match expr (pat body ...) ...)} ;;> where the result of @var{expr} is matched against each pattern in ;;> turn, and the corresponding body is evaluated for the first to ;;> succeed. Thus, a list of three elements matches a list of three ;;> elements. ;;> @example{(let ((ls (list 1 2 3))) (match ls ((1 2 3) #t)))} ;;> If no patterns match an error is signalled. ;;> Identifiers will match anything, and make the corresponding ;;> binding available in the body. ;;> @example{(match (list 1 2 3) ((a b c) b))} ;;> If the same identifier occurs multiple times, the first instance ;;> will match anything, but subsequent instances must match a value ;;> which is @scheme{equal?} to the first. ;;> @example{(match (list 1 2 1) ((a a b) 1) ((a b a) 2))} ;;> The special identifier @scheme{_} matches anything, no matter how ;;> many times it is used, and does not bind the result in the body. ;;> @example{(match (list 1 2 1) ((_ _ b) 1) ((a b a) 2))} ;;> To match a literal identifier (or list or any other literal), use ;;> @scheme{quote}. ;;> @example{(match 'a ('b 1) ('a 2))} ;;> Analogous to its normal usage in scheme, @scheme{quasiquote} can ;;> be used to quote a mostly literally matching object with selected ;;> parts unquoted. ;;> @example|{(match (list 1 2 3) (`(1 ,b ,c) (list b c)))}| ;;> Often you want to match any number of a repeated pattern. Inside ;;> a list pattern you can append @scheme{...} after an element to ;;> match zero or more of that pattern (like a regexp Kleene star). ;;> @example{(match (list 1 2) ((1 2 3 ...) #t))} ;;> @example{(match (list 1 2 3) ((1 2 3 ...) #t))} ;;> @example{(match (list 1 2 3 3 3) ((1 2 3 ...) #t))} ;;> Pattern variables matched inside the repeated pattern are bound to ;;> a list of each matching instance in the body. ;;> @example{(match (list 1 2) ((a b c ...) c))} ;;> @example{(match (list 1 2 3) ((a b c ...) c))} ;;> @example{(match (list 1 2 3 4 5) ((a b c ...) c))} ;;> More than one @scheme{...} may not be used in the same list, since ;;> this would require exponential backtracking in the general case. ;;> However, @scheme{...} need not be the final element in the list, ;;> and may be succeeded by a fixed number of patterns. ;;> @example{(match (list 1 2 3 4) ((a b c ... d e) c))} ;;> @example{(match (list 1 2 3 4 5) ((a b c ... d e) c))} ;;> @example{(match (list 1 2 3 4 5 6 7) ((a b c ... d e) c))} ;;> @scheme{___} is provided as an alias for @scheme{...} when it is ;;> inconvenient to use the ellipsis (as in a syntax-rules template). ;;> The @scheme{..1} syntax is exactly like the @scheme{...} except ;;> that it matches one or more repetitions (like a regexp "+"). ;;> @example{(match (list 1 2) ((a b c ..1) c))} ;;> @example{(match (list 1 2 3) ((a b c ..1) c))} ;;> The boolean operators @scheme{and}, @scheme{or} and @scheme{not} ;;> can be used to group and negate patterns analogously to their ;;> Scheme counterparts. ;;> The @scheme{and} operator ensures that all subpatterns match. ;;> This operator is often used with the idiom @scheme{(and x pat)} to ;;> bind @var{x} to the entire value that matches @var{pat} ;;> (c.f. "as-patterns" in ML or Haskell). Another common use is in ;;> conjunction with @scheme{not} patterns to match a general case ;;> with certain exceptions. ;;> @example{(match 1 ((and) #t))} ;;> @example{(match 1 ((and x) x))} ;;> @example{(match 1 ((and x 1) x))} ;;> The @scheme{or} operator ensures that at least one subpattern ;;> matches. If the same identifier occurs in different subpatterns, ;;> it is matched independently. All identifiers from all subpatterns ;;> are bound if the @scheme{or} operator matches, but the binding is ;;> only defined for identifiers from the subpattern which matched. ;;> @example{(match 1 ((or) #t) (else #f))} ;;> @example{(match 1 ((or x) x))} ;;> @example{(match 1 ((or x 2) x))} ;;> The @scheme{not} operator succeeds if the given pattern doesn't ;;> match. None of the identifiers used are available in the body. ;;> @example{(match 1 ((not 2) #t))} ;;> The more general operator @scheme{?} can be used to provide a ;;> predicate. The usage is @scheme{(? predicate pat ...)} where ;;> @var{predicate} is a Scheme expression evaluating to a predicate ;;> called on the value to match, and any optional patterns after the ;;> predicate are then matched as in an @scheme{and} pattern. ;;> @example{(match 1 ((? odd? x) x))} ;;> The field operator @scheme{=} is used to extract an arbitrary ;;> field and match against it. It is useful for more complex or ;;> conditional destructuring that can't be more directly expressed in ;;> the pattern syntax. The usage is @scheme{(= field pat)}, where ;;> @var{field} can be any expression, and should result in a ;;> procedure of one argument, which is applied to the value to match ;;> to generate a new value to match against @var{pat}. ;;> Thus the pattern @scheme{(and (= car x) (= cdr y))} is equivalent ;;> to @scheme{(x . y)}, except it will result in an immediate error ;;> if the value isn't a pair. ;;> @example{(match '(1 . 2) ((= car x) x))} ;;> @example{(match 4 ((= sqrt x) x))} ;;> The record operator @scheme{$} is used as a concise way to match ;;> records defined by SRFI-9 (or SRFI-99). The usage is ;;> @scheme{($ rtd field ...)}, where @var{rtd} should be the record ;;> type descriptor specified as the first argument to ;;> @scheme{define-record-type}, and each @var{field} is a subpattern ;;> matched against the fields of the record in order. Not all fields ;;> must be present. ;;> @example{ ;;> (let () ;;> (define-record-type employee ;;> (make-employee name title) ;;> employee? ;;> (name get-name) ;;> (title get-title)) ;;> (match (make-employee "Bob" "Doctor") ;;> (($ employee n t) (list t n)))) ;;> } ;;> The @scheme{set!} and @scheme{get!} operators are used to bind an ;;> identifier to the setter and getter of a field, respectively. The ;;> setter is a procedure of one argument, which mutates the field to ;;> that argument. The getter is a procedure of no arguments which ;;> returns the current value of the field. ;;> @example{(let ((x (cons 1 2))) (match x ((1 . (set! s)) (s 3) x)))} ;;> @example{(match '(1 . 2) ((1 . (get! g)) (g)))} ;;> The new operator @scheme{***} can be used to search a tree for ;;> subpatterns. A pattern of the form @scheme{(x *** y)} represents ;;> the subpattern @var{y} located somewhere in a tree where the path ;;> from the current object to @var{y} can be seen as a list of the ;;> form @scheme{(x ...)}. @var{y} can immediately match the current ;;> object in which case the path is the empty list. In a sense it's ;;> a 2-dimensional version of the @scheme{...} pattern. ;;> As a common case the pattern @scheme{(_ *** y)} can be used to ;;> search for @var{y} anywhere in a tree, regardless of the path ;;> used. ;;> @example{(match '(a (a (a b))) ((x *** 'b) x))} ;;> @example{(match '(a (b) (c (d e) (f g))) ((x *** 'g) x))} ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Notes ;; The implementation is a simple generative pattern matcher - each ;; pattern is expanded into the required tests, calling a failure ;; continuation if the tests fail. This makes the logic easy to ;; follow and extend, but produces sub-optimal code in cases where you ;; have many similar clauses due to repeating the same tests. ;; Nonetheless a smart compiler should be able to remove the redundant ;; tests. For MATCH-LET and DESTRUCTURING-BIND type uses there is no ;; performance hit. ;; The original version was written on 2006/11/29 and described in the ;; following Usenet post: ;; http://groups.google.com/group/comp.lang.scheme/msg/0941234de7112ffd ;; and is still available at ;; http://synthcode.com/scheme/match-simple.scm ;; It's just 80 lines for the core MATCH, and an extra 40 lines for ;; MATCH-LET, MATCH-LAMBDA and other syntactic sugar. ;; ;; A variant of this file which uses COND-EXPAND in a few places for ;; performance can be found at ;; http://synthcode.com/scheme/match-cond-expand.scm ;; ;; 2016/03/06 - fixing named match-let (thanks to Stefan Israelsson Tampe) ;; 2015/05/09 - fixing bug in var extraction of quasiquote patterns ;; 2014/11/24 - [OMITTED IN GUILE] adding Gauche's `@' pattern for named record field matching ;; 2012/12/26 - wrapping match-let&co body in lexical closure ;; 2012/11/28 - fixing typo s/vetor/vector in largely unused set! code ;; 2012/05/23 - fixing combinatorial explosion of code in certain or patterns ;; 2011/09/25 - fixing bug when directly matching an identifier repeated in ;; the pattern (thanks to Stefan Israelsson Tampe) ;; 2011/01/27 - fixing bug when matching tail patterns against improper lists ;; 2010/09/26 - adding `..1' patterns (thanks to Ludovic Courtès) ;; 2010/09/07 - fixing identifier extraction in some `...' and `***' patterns ;; 2009/11/25 - adding `***' tree search patterns ;; 2008/03/20 - fixing bug where (a ...) matched non-lists ;; 2008/03/15 - removing redundant check in vector patterns ;; 2008/03/06 - you can use `...' portably now (thanks to Taylor Campbell) ;; 2007/09/04 - fixing quasiquote patterns ;; 2007/07/21 - allowing ellipsis patterns in non-final list positions ;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipsis ;; (thanks to Taylor Campbell) ;; 2007/04/08 - clean up, commenting ;; 2006/12/24 - bugfixes ;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set! ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; force compile-time syntax errors with useful messages (define-syntax match-syntax-error (syntax-rules () ((_) (match-syntax-error "invalid match-syntax-error usage")))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;> @subsubsection{Syntax} ;;> @subsubsubsection{@rawcode{(match expr (pattern . body) ...)@br{} ;;> (match expr (pattern (=> failure) . body) ...)}} ;;> The result of @var{expr} is matched against each @var{pattern} in ;;> turn, according to the pattern rules described in the previous ;;> section, until the the first @var{pattern} matches. When a match is ;;> found, the corresponding @var{body}s are evaluated in order, ;;> and the result of the last expression is returned as the result ;;> of the entire @scheme{match}. If a @var{failure} is provided, ;;> then it is bound to a procedure of no arguments which continues, ;;> processing at the next @var{pattern}. If no @var{pattern} matches, ;;> an error is signalled. ;; The basic interface. MATCH just performs some basic syntax ;; validation, binds the match expression to a temporary variable `v', ;; and passes it on to MATCH-NEXT. It's a constant throughout the ;; code below that the binding `v' is a direct variable reference, not ;; an expression. (define-syntax match (syntax-rules () ((match) (match-syntax-error "missing match expression")) ((match atom) (match-syntax-error "no match clauses")) ((match (app ...) (pat . body) ...) (let ((v (app ...))) (match-next v ((app ...) (set! (app ...))) (pat . body) ...))) ((match #(vec ...) (pat . body) ...) (let ((v #(vec ...))) (match-next v (v (set! v)) (pat . body) ...))) ((match atom (pat . body) ...) (let ((v atom)) (match-next v (atom (set! atom)) (pat . body) ...))) )) ;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure ;; thunk, which is expanded by recursing MATCH-NEXT on the remaining ;; clauses. `g+s' is a list of two elements, the get! and set! ;; expressions respectively. (define-syntax match-next (syntax-rules (=>) ;; no more clauses, the match failed ((match-next v g+s) ;; Here we call error in non-tail context, so that the backtrace ;; can show the source location of the failing match form. (begin (error 'match "no matching pattern" v) #f)) ;; named failure continuation ((match-next v g+s (pat (=> failure) . body) . rest) (let ((failure (lambda () (match-next v g+s . rest)))) ;; match-one analyzes the pattern for us (match-one v pat g+s (match-drop-ids (begin . body)) (failure) ()))) ;; anonymous failure continuation, give it a dummy name ((match-next v g+s (pat . body) . rest) (match-next v g+s (pat (=> failure) . body) . rest)))) ;; MATCH-ONE first checks for ellipsis patterns, otherwise passes on to ;; MATCH-TWO. (define-syntax match-one (syntax-rules () ;; If it's a list of two or more values, check to see if the ;; second one is an ellipsis and handle accordingly, otherwise go ;; to MATCH-TWO. ((match-one v (p q . r) g+s sk fk i) (match-check-ellipsis q (match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ()) (match-two v (p q . r) g+s sk fk i))) ;; Go directly to MATCH-TWO. ((match-one . x) (match-two . x)))) ;; This is the guts of the pattern matcher. We are passed a lot of ;; information in the form: ;; ;; (match-two var pattern getter setter success-k fail-k (ids ...)) ;; ;; usually abbreviated ;; ;; (match-two v p g+s sk fk i) ;; ;; where VAR is the symbol name of the current variable we are ;; matching, PATTERN is the current pattern, getter and setter are the ;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding ;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure ;; continuation (which is just a thunk call and is thus safe to expand ;; multiple times) and IDS are the list of identifiers bound in the ;; pattern so far. (define-syntax match-two (syntax-rules (_ ___ ..1 *** quote quasiquote ? $ = and or not set! get!) ((match-two v () g+s (sk ...) fk i) (if (null? v) (sk ... i) fk)) ((match-two v (quote p) g+s (sk ...) fk i) (if (equal? v 'p) (sk ... i) fk)) ((match-two v (quasiquote p) . x) (match-quasiquote v p . x)) ((match-two v (and) g+s (sk ...) fk i) (sk ... i)) ((match-two v (and p q ...) g+s sk fk i) (match-one v p g+s (match-one v (and q ...) g+s sk fk) fk i)) ((match-two v (or) g+s sk fk i) fk) ((match-two v (or p) . x) (match-one v p . x)) ((match-two v (or p ...) g+s sk fk i) (match-extract-vars (or p ...) (match-gen-or v (p ...) g+s sk fk i) i ())) ((match-two v (not p) g+s (sk ...) fk i) (match-one v p g+s (match-drop-ids fk) (sk ... i) i)) ((match-two v (get! getter) (g s) (sk ...) fk i) (let ((getter (lambda () g))) (sk ... i))) ((match-two v (set! setter) (g (s ...)) (sk ...) fk i) (let ((setter (lambda (x) (s ... x)))) (sk ... i))) ((match-two v (? pred . p) g+s sk fk i) (if (pred v) (match-one v (and . p) g+s sk fk i) fk)) ((match-two v (= proc p) . x) (let ((w (proc v))) (match-one w p . x))) ((match-two v (p ___ . r) g+s sk fk i) (match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ())) ((match-two v (p) g+s sk fk i) (if (and (pair? v) (null? (cdr v))) (let ((w (car v))) (match-one w p ((car v) (set-car! v)) sk fk i)) fk)) ((match-two v (p *** q) g+s sk fk i) (match-extract-vars p (match-gen-search v p q g+s sk fk i) i ())) ((match-two v (p *** . q) g+s sk fk i) (match-syntax-error "invalid use of ***" (p *** . q))) ((match-two v (p ..1) g+s sk fk i) (if (pair? v) (match-one v (p ___) g+s sk fk i) fk)) ((match-two v ($ rec p ...) g+s sk fk i) (if (is-a? v rec) (match-record-refs v rec 0 (p ...) g+s sk fk i) fk)) ((match-two v (p . q) g+s sk fk i) (if (pair? v) (let ((w (car v)) (x (cdr v))) (match-one w p ((car v) (set-car! v)) (match-one x q ((cdr v) (set-cdr! v)) sk fk) fk i)) fk)) ((match-two v #(p ...) g+s . x) (match-vector v 0 () (p ...) . x)) ((match-two v _ g+s (sk ...) fk i) (sk ... i)) ;; Not a pair or vector or special literal, test to see if it's a ;; new symbol, in which case we just bind it, or if it's an ;; already bound symbol or some other literal, in which case we ;; compare it with EQUAL?. ((match-two v x g+s (sk ...) fk (id ...)) (let-syntax ((new-sym? (syntax-rules (id ...) ((new-sym? x sk2 fk2) sk2) ((new-sym? y sk2 fk2) fk2)))) (new-sym? random-sym-to-match (let ((x v)) (sk ... (id ... x))) (if (equal? v x) (sk ... (id ...)) fk)))) )) ;; QUASIQUOTE patterns (define-syntax match-quasiquote (syntax-rules (unquote unquote-splicing quasiquote) ((_ v (unquote p) g+s sk fk i) (match-one v p g+s sk fk i)) ((_ v ((unquote-splicing p) . rest) g+s sk fk i) (if (pair? v) (match-one v (p . tmp) (match-quasiquote tmp rest g+s sk fk) fk i) fk)) ((_ v (quasiquote p) g+s sk fk i . depth) (match-quasiquote v p g+s sk fk i #f . depth)) ((_ v (unquote p) g+s sk fk i x . depth) (match-quasiquote v p g+s sk fk i . depth)) ((_ v (unquote-splicing p) g+s sk fk i x . depth) (match-quasiquote v p g+s sk fk i . depth)) ((_ v (p . q) g+s sk fk i . depth) (if (pair? v) (let ((w (car v)) (x (cdr v))) (match-quasiquote w p g+s (match-quasiquote-step x q g+s sk fk depth) fk i . depth)) fk)) ((_ v #(elt ...) g+s sk fk i . depth) (if (vector? v) (let ((ls (vector->list v))) (match-quasiquote ls (elt ...) g+s sk fk i . depth)) fk)) ((_ v x g+s sk fk i . depth) (match-one v 'x g+s sk fk i)))) (define-syntax match-quasiquote-step (syntax-rules () ((match-quasiquote-step x q g+s sk fk depth i) (match-quasiquote x q g+s sk fk i . depth)))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Utilities ;; Takes two values and just expands into the first. (define-syntax match-drop-ids (syntax-rules () ((_ expr ids ...) expr))) (define-syntax match-tuck-ids (syntax-rules () ((_ (letish args (expr ...)) ids ...) (letish args (expr ... ids ...))))) (define-syntax match-drop-first-arg (syntax-rules () ((_ arg expr) expr))) ;; To expand an OR group we try each clause in succession, passing the ;; first that succeeds to the success continuation. On failure for ;; any clause, we just try the next clause, finally resorting to the ;; failure continuation fk if all clauses fail. The only trick is ;; that we want to unify the identifiers, so that the success ;; continuation can refer to a variable from any of the OR clauses. (define-syntax match-gen-or (syntax-rules () ((_ v p g+s (sk ...) fk (i ...) ((id id-ls) ...)) (let ((sk2 (lambda (id ...) (sk ... (i ... id ...))))) (match-gen-or-step v p g+s (match-drop-ids (sk2 id ...)) fk (i ...)))))) (define-syntax match-gen-or-step (syntax-rules () ((_ v () g+s sk fk . x) ;; no OR clauses, call the failure continuation fk) ((_ v (p) . x) ;; last (or only) OR clause, just expand normally (match-one v p . x)) ((_ v (p . q) g+s sk fk i) ;; match one and try the remaining on failure (let ((fk2 (lambda () (match-gen-or-step v q g+s sk fk i)))) (match-one v p g+s sk (fk2) i))) )) ;; We match a pattern (p ...) by matching the pattern p in a loop on ;; each element of the variable, accumulating the bound ids into lists. ;; Look at the body of the simple case - it's just a named let loop, ;; matching each element in turn to the same pattern. The only trick ;; is that we want to keep track of the lists of each extracted id, so ;; when the loop recurses we cons the ids onto their respective list ;; variables, and on success we bind the ids (what the user input and ;; expects to see in the success body) to the reversed accumulated ;; list IDs. (define-syntax match-gen-ellipsis (syntax-rules () ((_ v p () g+s (sk ...) fk i ((id id-ls) ...)) (match-check-identifier p ;; simplest case equivalent to (p ...), just bind the list (let ((p v)) (if (list? p) (sk ... i) fk)) ;; simple case, match all elements of the list (let loop ((ls v) (id-ls '()) ...) (cond ((null? ls) (let ((id (reverse id-ls)) ...) (sk ... i))) ((pair? ls) (let ((w (car ls))) (match-one w p ((car ls) (set-car! ls)) (match-drop-ids (loop (cdr ls) (cons id id-ls) ...)) fk i))) (else fk))))) ((_ v p r g+s (sk ...) fk i ((id id-ls) ...)) ;; general case, trailing patterns to match, keep track of the ;; remaining list length so we don't need any backtracking (match-verify-no-ellipsis r (let* ((tail-len (length 'r)) (ls v) (len (and (list? ls) (length ls)))) (if (or (not len) (< len tail-len)) fk (let loop ((ls ls) (n len) (id-ls '()) ...) (cond ((= n tail-len) (let ((id (reverse id-ls)) ...) (match-one ls r (#f #f) (sk ...) fk i))) ((pair? ls) (let ((w (car ls))) (match-one w p ((car ls) (set-car! ls)) (match-drop-ids (loop (cdr ls) (- n 1) (cons id id-ls) ...)) fk i))) (else fk))))))))) ;; This is just a safety check. Although unlike syntax-rules we allow ;; trailing patterns after an ellipsis, we explicitly disable multiple ;; ellipses at the same level. This is because in the general case ;; such patterns are exponential in the number of ellipses, and we ;; don't want to make it easy to construct very expensive operations ;; with simple looking patterns. For example, it would be O(n^2) for ;; patterns like (a ... b ...) because we must consider every trailing ;; element for every possible break for the leading "a ...". (define-syntax match-verify-no-ellipsis (syntax-rules () ((_ (x . y) sk) (match-check-ellipsis x (match-syntax-error "multiple ellipsis patterns not allowed at same level") (match-verify-no-ellipsis y sk))) ((_ () sk) sk) ((_ x sk) (match-syntax-error "dotted tail not allowed after ellipsis" x)))) ;; To implement the tree search, we use two recursive procedures. TRY ;; attempts to match Y once, and on success it calls the normal SK on ;; the accumulated list ids as in MATCH-GEN-ELLIPSIS. On failure, we ;; call NEXT which first checks if the current value is a list ;; beginning with X, then calls TRY on each remaining element of the ;; list. Since TRY will recursively call NEXT again on failure, this ;; effects a full depth-first search. ;; ;; The failure continuation throughout is a jump to the next step in ;; the tree search, initialized with the original failure continuation ;; FK. (define-syntax match-gen-search (syntax-rules () ((match-gen-search v p q g+s sk fk i ((id id-ls) ...)) (letrec ((try (lambda (w fail id-ls ...) (match-one w q g+s (match-tuck-ids (let ((id (reverse id-ls)) ...) sk)) (next w fail id-ls ...) i))) (next (lambda (w fail id-ls ...) (if (not (pair? w)) (fail) (let ((u (car w))) (match-one u p ((car w) (set-car! w)) (match-drop-ids ;; accumulate the head variables from ;; the p pattern, and loop over the tail (let ((id-ls (cons id id-ls)) ...) (let lp ((ls (cdr w))) (if (pair? ls) (try (car ls) (lambda () (lp (cdr ls))) id-ls ...) (fail))))) (fail) i)))))) ;; the initial id-ls binding here is a dummy to get the right ;; number of '()s (let ((id-ls '()) ...) (try v (lambda () fk) id-ls ...)))))) ;; Vector patterns are just more of the same, with the slight ;; exception that we pass around the current vector index being ;; matched. (define-syntax match-vector (syntax-rules (___) ((_ v n pats (p q) . x) (match-check-ellipsis q (match-gen-vector-ellipsis v n pats p . x) (match-vector-two v n pats (p q) . x))) ((_ v n pats (p ___) sk fk i) (match-gen-vector-ellipsis v n pats p sk fk i)) ((_ . x) (match-vector-two . x)))) ;; Check the exact vector length, then check each element in turn. (define-syntax match-vector-two (syntax-rules () ((_ v n ((pat index) ...) () sk fk i) (if (vector? v) (let ((len (vector-length v))) (if (= len n) (match-vector-step v ((pat index) ...) sk fk i) fk)) fk)) ((_ v n (pats ...) (p . q) . x) (match-vector v (+ n 1) (pats ... (p n)) q . x)))) (define-syntax match-vector-step (syntax-rules () ((_ v () (sk ...) fk i) (sk ... i)) ((_ v ((pat index) . rest) sk fk i) (let ((w (vector-ref v index))) (match-one w pat ((vector-ref v index) (vector-set! v index)) (match-vector-step v rest sk fk) fk i))))) ;; With a vector ellipsis pattern we first check to see if the vector ;; length is at least the required length. (define-syntax match-gen-vector-ellipsis (syntax-rules () ((_ v n ((pat index) ...) p sk fk i) (if (vector? v) (let ((len (vector-length v))) (if (>= len n) (match-vector-step v ((pat index) ...) (match-vector-tail v p n len sk fk) fk i) fk)) fk)))) (define-syntax match-vector-tail (syntax-rules () ((_ v p n len sk fk i) (match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ())))) (define-syntax match-vector-tail-two (syntax-rules () ((_ v p n len (sk ...) fk i ((id id-ls) ...)) (let loop ((j n) (id-ls '()) ...) (if (>= j len) (let ((id (reverse id-ls)) ...) (sk ... i)) (let ((w (vector-ref v j))) (match-one w p ((vector-ref v j) (vector-set! v j)) (match-drop-ids (loop (+ j 1) (cons id id-ls) ...)) fk i))))))) (define-syntax match-record-refs (syntax-rules () ((_ v rec n (p . q) g+s sk fk i) (let ((w (slot-ref rec v n))) (match-one w p ((slot-ref rec v n) (slot-set! rec v n)) (match-record-refs v rec (+ n 1) q g+s sk fk) fk i))) ((_ v rec n () g+s (sk ...) fk i) (sk ... i)))) ;; Extract all identifiers in a pattern. A little more complicated ;; than just looking for symbols, we need to ignore special keywords ;; and non-pattern forms (such as the predicate expression in ? ;; patterns), and also ignore previously bound identifiers. ;; ;; Calls the continuation with all new vars as a list of the form ;; ((orig-var tmp-name) ...), where tmp-name can be used to uniquely ;; pair with the original variable (e.g. it's used in the ellipsis ;; generation for list variables). ;; ;; (match-extract-vars pattern continuation (ids ...) (new-vars ...)) (define-syntax match-extract-vars (syntax-rules (_ ___ ..1 *** ? $ = quote quasiquote and or not get! set!) ((match-extract-vars (? pred . p) . x) (match-extract-vars p . x)) ((match-extract-vars ($ rec . p) . x) (match-extract-vars p . x)) ((match-extract-vars (= proc p) . x) (match-extract-vars p . x)) ((match-extract-vars (quote x) (k ...) i v) (k ... v)) ((match-extract-vars (quasiquote x) k i v) (match-extract-quasiquote-vars x k i v (#t))) ((match-extract-vars (and . p) . x) (match-extract-vars p . x)) ((match-extract-vars (or . p) . x) (match-extract-vars p . x)) ((match-extract-vars (not . p) . x) (match-extract-vars p . x)) ;; A non-keyword pair, expand the CAR with a continuation to ;; expand the CDR. ((match-extract-vars (p q . r) k i v) (match-check-ellipsis q (match-extract-vars (p . r) k i v) (match-extract-vars p (match-extract-vars-step (q . r) k i v) i ()))) ((match-extract-vars (p . q) k i v) (match-extract-vars p (match-extract-vars-step q k i v) i ())) ((match-extract-vars #(p ...) . x) (match-extract-vars (p ...) . x)) ((match-extract-vars _ (k ...) i v) (k ... v)) ((match-extract-vars ___ (k ...) i v) (k ... v)) ((match-extract-vars *** (k ...) i v) (k ... v)) ((match-extract-vars ..1 (k ...) i v) (k ... v)) ;; This is the main part, the only place where we might add a new ;; var if it's an unbound symbol. ((match-extract-vars p (k ...) (i ...) v) (let-syntax ((new-sym? (syntax-rules (i ...) ((new-sym? p sk fk) sk) ((new-sym? any sk fk) fk)))) (new-sym? random-sym-to-match (k ... ((p p-ls) . v)) (k ... v)))) )) ;; Stepper used in the above so it can expand the CAR and CDR ;; separately. (define-syntax match-extract-vars-step (syntax-rules () ((_ p k i v ((v2 v2-ls) ...)) (match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v))) )) (define-syntax match-extract-quasiquote-vars (syntax-rules (quasiquote unquote unquote-splicing) ((match-extract-quasiquote-vars (quasiquote x) k i v d) (match-extract-quasiquote-vars x k i v (#t . d))) ((match-extract-quasiquote-vars (unquote-splicing x) k i v d) (match-extract-quasiquote-vars (unquote x) k i v d)) ((match-extract-quasiquote-vars (unquote x) k i v (#t)) (match-extract-vars x k i v)) ((match-extract-quasiquote-vars (unquote x) k i v (#t . d)) (match-extract-quasiquote-vars x k i v d)) ((match-extract-quasiquote-vars (x . y) k i v d) (match-extract-quasiquote-vars x (match-extract-quasiquote-vars-step y k i v d) i () d)) ((match-extract-quasiquote-vars #(x ...) k i v d) (match-extract-quasiquote-vars (x ...) k i v d)) ((match-extract-quasiquote-vars x (k ...) i v d) (k ... v)) )) (define-syntax match-extract-quasiquote-vars-step (syntax-rules () ((_ x k i v d ((v2 v2-ls) ...)) (match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d)) )) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Gimme some sugar baby. ;;> Shortcut for @scheme{lambda} + @scheme{match}. Creates a ;;> procedure of one argument, and matches that argument against each ;;> clause. (define-syntax match-lambda (syntax-rules () ((_ (pattern . body) ...) (lambda (expr) (match expr (pattern . body) ...))))) ;;> Similar to @scheme{match-lambda}. Creates a procedure of any ;;> number of arguments, and matches the argument list against each ;;> clause. (define-syntax match-lambda* (syntax-rules () ((_ (pattern . body) ...) (lambda expr (match expr (pattern . body) ...))))) ;;> Matches each var to the corresponding expression, and evaluates ;;> the body with all match variables in scope. Raises an error if ;;> any of the expressions fail to match. Syntax analogous to named ;;> let can also be used for recursive functions which match on their ;;> arguments as in @scheme{match-lambda*}. (define-syntax match-let (syntax-rules () ((_ ((var value) ...) . body) (match-let/helper let () () ((var value) ...) . body)) ((_ loop ((var init) ...) . body) (match-named-let loop () ((var init) ...) . body)))) ;;> Similar to @scheme{match-let}, but analogously to @scheme{letrec} ;;> matches and binds the variables with all match variables in scope. (define-syntax match-letrec (syntax-rules () ((_ ((var value) ...) . body) (match-let/helper letrec () () ((var value) ...) . body)))) (define-syntax match-let/helper (syntax-rules () ((_ let ((var expr) ...) () () . body) (let ((var expr) ...) . body)) ((_ let ((var expr) ...) ((pat tmp) ...) () . body) (let ((var expr) ...) (match-let* ((pat tmp) ...) . body))) ((_ let (v ...) (p ...) (((a . b) expr) . rest) . body) (match-let/helper let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body)) ((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body) (match-let/helper let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body)) ((_ let (v ...) (p ...) ((a expr) . rest) . body) (match-let/helper let (v ... (a expr)) (p ...) rest . body)))) (define-syntax match-named-let (syntax-rules () ((_ loop ((pat expr var) ...) () . body) (let loop ((var expr) ...) (match-let ((pat var) ...) . body))) ((_ loop (v ...) ((pat expr) . rest) . body) (match-named-let loop (v ... (pat expr tmp)) rest . body)))) ;;> @subsubsubsection{@rawcode{(match-let* ((var value) ...) body ...)}} ;;> Similar to @scheme{match-let}, but analogously to @scheme{let*} ;;> matches and binds the variables in sequence, with preceding match ;;> variables in scope. (define-syntax match-let* (syntax-rules () ((_ () . body) (let () . body)) ((_ ((pat expr) . rest) . body) (match expr (pat (match-let* rest . body)))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Otherwise COND-EXPANDed bits. ;; This *should* work, but doesn't :( ;; (define-syntax match-check-ellipsis ;; (syntax-rules (...) ;; ((_ ... sk fk) sk) ;; ((_ x sk fk) fk))) ;; This is a little more complicated, and introduces a new let-syntax, ;; but should work portably in any R[56]RS Scheme. Taylor Campbell ;; originally came up with the idea. (define-syntax match-check-ellipsis (syntax-rules () ;; these two aren't necessary but provide fast-case failures ((match-check-ellipsis (a . b) success-k failure-k) failure-k) ((match-check-ellipsis #(a ...) success-k failure-k) failure-k) ;; matching an atom ((match-check-ellipsis id success-k failure-k) (let-syntax ((ellipsis? (syntax-rules () ;; iff `id' is `...' here then this will ;; match a list of any length ((ellipsis? (foo id) sk fk) sk) ((ellipsis? other sk fk) fk)))) ;; this list of three elements will only match the (foo id) list ;; above if `id' is `...' (ellipsis? (a b c) success-k failure-k))))) ;; This is portable but can be more efficient with non-portable ;; extensions. This trick was originally discovered by Oleg Kiselyov. (define-syntax match-check-identifier (syntax-rules () ;; fast-case failures, lists and vectors are not identifiers ((_ (x . y) success-k failure-k) failure-k) ((_ #(x ...) success-k failure-k) failure-k) ;; x is an atom ((_ x success-k failure-k) (let-syntax ((sym? (syntax-rules () ;; if the symbol `abracadabra' matches x, then x is a ;; symbol ((sym? x sk fk) sk) ;; otherwise x is a non-symbol datum ((sym? y sk fk) fk)))) (sym? abracadabra success-k failure-k)))))