// Copyright (C) 2004 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_MEMORY_MANAGER_KERNEl_2_ #define DLIB_MEMORY_MANAGER_KERNEl_2_ #include "../algs.h" #include "memory_manager_kernel_abstract.h" #include "../assert.h" #include <new> namespace dlib { template < typename T, unsigned long chunk_size > class memory_manager_kernel_2 { /*! INITIAL VALUE allocations == 0 next == 0 first_chunk == 0 REQUIREMENTS ON chunk_size chunk_size is the number of items of type T we will allocate at a time. so it must be > 0. CONVENTION This memory manager implementation allocates memory in blocks of chunk_size*sizeof(T) bytes. All the sizeof(T) subblocks are kept in a linked list of free memory blocks and are given out whenever an allocation request occurs. Also, memory is not freed until this object is destructed. Note that array allocations are not memory managed. allocations == get_number_of_allocations() - if (next != 0) then - next == the next pointer to return from allocate() and next == pointer to the first node in a linked list. each node is one item in the memory pool. - the last node in the linked list has next set to 0 - else - we need to call new to get the next pointer to return from allocate() - if (first_chunk != 0) then - first_chunk == the first node in a linked list that contains pointers to all the chunks we have ever allocated. The last link in the list has its next pointer set to 0. !*/ union node { node* next; char item[sizeof(T)]; }; struct chunk_node { node* chunk; chunk_node* next; }; public: typedef T type; template <typename U> struct rebind { typedef memory_manager_kernel_2<U,chunk_size> other; }; memory_manager_kernel_2( ) : allocations(0), next(0), first_chunk(0) { // You FOOL! You can't have a zero chunk_size. COMPILE_TIME_ASSERT(chunk_size > 0); } virtual ~memory_manager_kernel_2( ) { if (allocations == 0) { while (first_chunk != 0) { chunk_node* temp = first_chunk; first_chunk = first_chunk->next; // delete the memory chunk ::operator delete ( static_cast<void*>(temp->chunk)); // delete the chunk_node delete temp; } } } unsigned long get_number_of_allocations ( ) const { return allocations; } T* allocate_array ( unsigned long size ) { T* temp = new T[size]; ++allocations; return temp; } void deallocate_array ( T* item ) { --allocations; delete [] item; } T* allocate ( ) { T* temp = 0; if (next != 0) { temp = reinterpret_cast<T*>(next); node* n = next->next; try { // construct this new T object with placement new. new (static_cast<void*>(temp))T(); } catch (...) { next->next = n; throw; } next = n; } else { // the linked list is empty so we need to allocate some more memory node* block = 0; block = static_cast<node*>(::operator new (sizeof(node)*chunk_size)); // the first part of this block can be our new object temp = reinterpret_cast<T*>(block); try { // construct this new T object with placement new. new (static_cast<void*>(temp))T(); } catch (...) { // construction of the new object threw so delete the block of memory ::operator delete ( static_cast<void*>(block)); throw; } // allocate a new chunk_node chunk_node* chunk; try {chunk = new chunk_node; } catch (...) { temp->~T(); ::operator delete ( static_cast<void*>(block)); throw; } // add this block into the chunk list chunk->chunk = block; chunk->next = first_chunk; first_chunk = chunk; ++block; // now add the rest of the block into the linked list of free nodes. for (unsigned long i = 0; i < chunk_size-1; ++i) { block->next = next; next = block; ++block; } } ++allocations; return temp; } void deallocate ( T* item ) { --allocations; item->~T(); // add this memory into our linked list. node* temp = reinterpret_cast<node*>(item); temp->next = next; next = temp; } void swap ( memory_manager_kernel_2& item ) { exchange(allocations,item.allocations); exchange(next,item.next); exchange(first_chunk,item.first_chunk); } private: // data members unsigned long allocations; node* next; chunk_node* first_chunk; // restricted functions memory_manager_kernel_2(memory_manager_kernel_2&); // copy constructor memory_manager_kernel_2& operator=(memory_manager_kernel_2&); // assignment operator }; template < typename T, unsigned long chunk_size > inline void swap ( memory_manager_kernel_2<T,chunk_size>& a, memory_manager_kernel_2<T,chunk_size>& b ) { a.swap(b); } // ---------------------------------------------------------------------------------------- } #endif // DLIB_MEMORY_MANAGER_KERNEl_2_