Sha256: 3070d10851e1f92a435361c67d211f1cfc6c3e19bdfab93b92b0b54c30799a79
Contents?: true
Size: 890 Bytes
Versions: 3
Compression:
Stored size: 890 Bytes
Contents
require "dnn" require "dnn/mnist" # If you use numo/linalg then please uncomment out. # require "numo/linalg/autoloader" include DNN::Layers include DNN::Activations include DNN::Optimizers include DNN::Losses Model = DNN::Model MNIST = DNN::MNIST x_train, y_train = MNIST.load_train x_test, y_test = MNIST.load_test x_train = Numo::SFloat.cast(x_train).reshape(x_train.shape[0], 28, 28) x_test = Numo::SFloat.cast(x_test).reshape(x_test.shape[0], 28, 28) x_train /= 255 x_test /= 255 y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat) y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat) model = Model.new model << InputLayer.new([28, 28]) model << LSTM.new(200) model << LSTM.new(200, return_sequences: false) model << Dense.new(10) model.compile(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])
Version data entries
3 entries across 3 versions & 1 rubygems
Version | Path |
---|---|
ruby-dnn-0.10.4 | examples/mnist_lstm_example.rb |
ruby-dnn-0.10.3 | examples/mnist_lstm_example.rb |
ruby-dnn-0.10.2 | examples/mnist_lstm_example.rb |