Implement the classic method for composing secret messages called a square code. Given an English text, output the encoded version of that text. First, the input is normalized: the spaces and punctuation are removed from the English text and the message is downcased. Then, the normalized characters are broken into rows. These rows can be regarded as forming a rectangle when printed with intervening newlines. For example, the sentence ```text "If man was meant to stay on the ground, god would have given us roots." ``` is normalized to: ```text "ifmanwasmeanttostayonthegroundgodwouldhavegivenusroots" ``` The plaintext should be organized in to a rectangle. The size of the rectangle (`r x c`) should be decided by the length of the message, such that `c >= r` and `c - r <= 1`, where `c` is the number of columns and `r` is the number of rows. Our normalized text is 54 characters long, dictating a rectangle with `c = 8` and `r = 7`: ```text "ifmanwas" "meanttos" "tayonthe" "groundgo" "dwouldha" "vegivenu" "sroots " ``` The coded message is obtained by reading down the columns going left to right. The message above is coded as: ```text "imtgdvsfearwermayoogoanouuiontnnlvtwttddesaohghnsseoau" ``` Output the encoded text in chunks that fill perfect rectangles `(r X c)`, with `c` chunks of `r` length, separated by spaces. For phrases that are `n` characters short of the perfect rectangle, pad each of the last `n` chunks with a single trailing space. ```text "imtgdvs fearwer mayoogo anouuio ntnnlvt wttddes aohghn sseoau " ``` Notice that were we to stack these, we could visually decode the cyphertext back in to the original message: ```text "imtgdvs" "fearwer" "mayoogo" "anouuio" "ntnnlvt" "wttddes" "aohghn " "sseoau " ```