#include "cones.h" #include "linalg.h" #include "scs.h" #include "scs_blas.h" /* contains BLAS(X) macros and type info */ #include "util.h" #define CONE_TOL (1e-9) #define CONE_THRESH (1e-8) #define EXP_CONE_MAX_ITERS (100) #define BOX_CONE_MAX_ITERS (25) #define POW_CONE_MAX_ITERS (20) /* Box cone limits (+ or -) taken to be INF */ #define MAX_BOX_VAL (1e15) #ifdef USE_LAPACK #ifdef __cplusplus extern "C" { #endif void BLAS(syev)(const char *jobz, const char *uplo, blas_int *n, scs_float *a, blas_int *lda, scs_float *w, scs_float *work, blas_int *lwork, blas_int *info); blas_int BLAS(syrk)(const char *uplo, const char *trans, const blas_int *n, const blas_int *k, const scs_float *alpha, const scs_float *a, const blas_int *lda, const scs_float *beta, scs_float *c, const blas_int *ldc); void BLAS(scal)(const blas_int *n, const scs_float *sa, scs_float *sx, const blas_int *incx); #ifdef __cplusplus } #endif #endif /* set the vector of rho y terms, based on scale and cones */ void SCS(set_r_y)(const ScsConeWork *c, scs_float scale, scs_float *r_y) { scs_int i; /* z cone */ for (i = 0; i < c->k->z; ++i) { /* set rho_y small for z, similar to rho_x term, since z corresponds to * dual free cone, this effectively decreases penalty on those entries * and lets them be determined almost entirely by the linear system solve */ r_y[i] = 1.0 / (1000. * scale); } /* others */ for (i = c->k->z; i < c->m; ++i) { r_y[i] = 1.0 / scale; } } /* the function f aggregates the entries within each cone */ void SCS(enforce_cone_boundaries)(const ScsConeWork *c, scs_float *vec, scs_float (*f)(const scs_float *, scs_int)) { scs_int i, j, delta; scs_int count = c->cone_boundaries[0]; scs_float wrk; for (i = 1; i < c->cone_boundaries_len; ++i) { delta = c->cone_boundaries[i]; wrk = f(&(vec[count]), delta); for (j = count; j < count + delta; ++j) { vec[j] = wrk; } count += delta; } } static inline scs_int get_sd_cone_size(scs_int s) { return (s * (s + 1)) / 2; } /* * boundaries will contain array of indices of rows of A corresponding to * cone boundaries, boundaries[0] is starting index for cones of size strictly * larger than 1, boundaries malloc-ed here so should be freed. */ void set_cone_boundaries(const ScsCone *k, ScsConeWork *c) { scs_int i, s_cone_sz, count = 0; scs_int cone_boundaries_len = 1 + k->qsize + k->ssize + k->ed + k->ep + k->psize; scs_int *b = (scs_int *)scs_calloc(cone_boundaries_len, sizeof(scs_int)); /* cones that can be scaled independently */ b[count] = k->z + k->l + k->bsize; count += 1; /* started at 0 now move to first entry */ for (i = 0; i < k->qsize; ++i) { b[count + i] = k->q[i]; } count += k->qsize; for (i = 0; i < k->ssize; ++i) { s_cone_sz = get_sd_cone_size(k->s[i]); b[count + i] = s_cone_sz; } count += k->ssize; /* add ssize here not ssize * (ssize + 1) / 2 */ /* exp cones */ for (i = 0; i < k->ep + k->ed; ++i) { b[count + i] = 3; } count += k->ep + k->ed; /* power cones */ for (i = 0; i < k->psize; ++i) { b[count + i] = 3; } count += k->psize; /* other cones */ c->cone_boundaries = b; c->cone_boundaries_len = cone_boundaries_len; } static scs_int get_full_cone_dims(const ScsCone *k) { scs_int i, c = k->z + k->l + k->bsize; if (k->qsize) { for (i = 0; i < k->qsize; ++i) { c += k->q[i]; } } if (k->ssize) { for (i = 0; i < k->ssize; ++i) { c += get_sd_cone_size(k->s[i]); } } if (k->ed) { c += 3 * k->ed; } if (k->ep) { c += 3 * k->ep; } if (k->psize) { c += 3 * k->psize; } return c; } scs_int SCS(validate_cones)(const ScsData *d, const ScsCone *k) { scs_int i; if (get_full_cone_dims(k) != d->m) { scs_printf("cone dimensions %li not equal to num rows in A = m = %li\n", (long)get_full_cone_dims(k), (long)d->m); return -1; } if (k->z && k->z < 0) { scs_printf("free cone dimension error\n"); return -1; } if (k->l && k->l < 0) { scs_printf("lp cone dimension error\n"); return -1; } if (k->bsize) { if (k->bsize < 0) { scs_printf("box cone dimension error\n"); return -1; } for (i = 0; i < k->bsize - 1; ++i) { if (k->bl[i] > k->bu[i]) { scs_printf("infeasible: box lower bound larger than upper bound\n"); return -1; } } } if (k->qsize && k->q) { if (k->qsize < 0) { scs_printf("soc cone dimension error\n"); return -1; } for (i = 0; i < k->qsize; ++i) { if (k->q[i] < 0) { scs_printf("soc cone dimension error\n"); return -1; } } } if (k->ssize && k->s) { if (k->ssize < 0) { scs_printf("sd cone dimension error\n"); return -1; } for (i = 0; i < k->ssize; ++i) { if (k->s[i] < 0) { scs_printf("sd cone dimension error\n"); return -1; } } } if (k->ed && k->ed < 0) { scs_printf("ep cone dimension error\n"); return -1; } if (k->ep && k->ep < 0) { scs_printf("ed cone dimension error\n"); return -1; } if (k->psize && k->p) { if (k->psize < 0) { scs_printf("power cone dimension error\n"); return -1; } for (i = 0; i < k->psize; ++i) { if (k->p[i] < -1 || k->p[i] > 1) { scs_printf("power cone error, values must be in [-1,1]\n"); return -1; } } } return 0; } void SCS(finish_cone)(ScsConeWork *c) { #ifdef USE_LAPACK if (c->Xs) { scs_free(c->Xs); } if (c->Z) { scs_free(c->Z); } if (c->e) { scs_free(c->e); } if (c->work) { scs_free(c->work); } #endif if (c->cone_boundaries) { scs_free(c->cone_boundaries); } if (c->s) { scs_free(c->s); } if (c->bu) { scs_free(c->bu); } if (c->bl) { scs_free(c->bl); } if (c) { scs_free(c); } } char *SCS(get_cone_header)(const ScsCone *k) { char *tmp = (char *)scs_malloc(sizeof(char) * 512); scs_int i, soc_vars, sd_vars; sprintf(tmp, "cones: "); if (k->z) { sprintf(tmp + strlen(tmp), "\t z: primal zero / dual free vars: %li\n", (long)k->z); } if (k->l) { sprintf(tmp + strlen(tmp), "\t l: linear vars: %li\n", (long)k->l); } if (k->bsize) { sprintf(tmp + strlen(tmp), "\t b: box cone vars: %li\n", (long)(k->bsize)); } soc_vars = 0; if (k->qsize && k->q) { for (i = 0; i < k->qsize; i++) { soc_vars += k->q[i]; } sprintf(tmp + strlen(tmp), "\t q: soc vars: %li, qsize: %li\n", (long)soc_vars, (long)k->qsize); } sd_vars = 0; if (k->ssize && k->s) { for (i = 0; i < k->ssize; i++) { sd_vars += get_sd_cone_size(k->s[i]); } sprintf(tmp + strlen(tmp), "\t s: psd vars: %li, ssize: %li\n", (long)sd_vars, (long)k->ssize); } if (k->ep || k->ed) { sprintf(tmp + strlen(tmp), "\t e: exp vars: %li, dual exp vars: %li\n", (long)(3 * k->ep), (long)(3 * k->ed)); } if (k->psize && k->p) { sprintf(tmp + strlen(tmp), "\t p: primal + dual power vars: %li\n", (long)(3 * k->psize)); } return tmp; } static scs_float exp_newton_one_d(scs_float rho, scs_float y_hat, scs_float z_hat, scs_float w) { scs_float t_prev, t = MAX(w - z_hat, MAX(-z_hat, 1e-9)); scs_float f = 1., fp = 1.; scs_int i; for (i = 0; i < EXP_CONE_MAX_ITERS; ++i) { t_prev = t; f = t * (t + z_hat) / rho / rho - y_hat / rho + log(t / rho) + 1; fp = (2 * t + z_hat) / rho / rho + 1 / t; t = t - f / fp; if (t <= -z_hat) { t = -z_hat; break; } else if (t <= 0) { t = 0; break; } else if (ABS(t - t_prev) < CONE_TOL) { break; } else if (SQRTF(f * f / fp) < CONE_TOL) { break; } } if (i == EXP_CONE_MAX_ITERS) { scs_printf("warning: exp cone newton step hit maximum %i iters\n", (int)i); scs_printf("rho=%1.5e; y_hat=%1.5e; z_hat=%1.5e; w=%1.5e; f=%1.5e, " "fp=%1.5e, t=%1.5e, t_prev= %1.5e\n", rho, y_hat, z_hat, w, f, fp, t, t_prev); } return t + z_hat; } static void exp_solve_for_x_with_rho(const scs_float *v, scs_float *x, scs_float rho, scs_float w) { x[2] = exp_newton_one_d(rho, v[1], v[2], w); x[1] = (x[2] - v[2]) * x[2] / rho; x[0] = v[0] - rho; } static scs_float exp_calc_grad(const scs_float *v, scs_float *x, scs_float rho, scs_float w) { exp_solve_for_x_with_rho(v, x, rho, w); if (x[1] <= 1e-12) { return x[0]; } return x[0] + x[1] * log(x[1] / x[2]); } static void exp_get_rho_ub(const scs_float *v, scs_float *x, scs_float *ub, scs_float *lb) { *lb = 0; *ub = 0.125; while (exp_calc_grad(v, x, *ub, v[1]) > 0) { *lb = *ub; (*ub) *= 2; } } /* project onto the exponential cone, v has dimension *exactly* 3 */ static scs_int proj_exp_cone(scs_float *v) { scs_int i; scs_float ub, lb, rho, g, x[3]; scs_float r = v[0], s = v[1], t = v[2]; /* v in cl(Kexp) */ if ((s * exp(r / s) - t <= CONE_THRESH && s > 0) || (r <= 0 && s == 0 && t >= 0)) { return 0; } /* -v in Kexp^* */ if ((r > 0 && r * exp(s / r) + exp(1) * t <= CONE_THRESH) || (r == 0 && s <= 0 && t <= 0)) { memset(v, 0, 3 * sizeof(scs_float)); return 0; } /* special case with analytical solution */ if (r < 0 && s < 0) { v[1] = 0.0; v[2] = MAX(v[2], 0); return 0; } /* iterative procedure to find projection, bisects on dual variable: */ exp_get_rho_ub(v, x, &ub, &lb); /* get starting upper and lower bounds */ for (i = 0; i < EXP_CONE_MAX_ITERS; ++i) { rho = (ub + lb) / 2; /* halfway between upper and lower bounds */ g = exp_calc_grad(v, x, rho, x[1]); /* calculates gradient wrt dual var */ if (g > 0) { lb = rho; } else { ub = rho; } if (ub - lb < CONE_TOL) { break; } } #if VERBOSITY > 10 scs_printf("exponential cone proj iters %i\n", (int)i); #endif if (i == EXP_CONE_MAX_ITERS) { scs_printf("warning: exp cone outer step hit maximum %i iters\n", (int)i); scs_printf("r=%1.5e; s=%1.5e; t=%1.5e\n", r, s, t); } v[0] = x[0]; v[1] = x[1]; v[2] = x[2]; return 0; } static scs_int set_up_sd_cone_work_space(ScsConeWork *c, const ScsCone *k) { scs_int i; #ifdef USE_LAPACK blas_int n_max = 0; blas_int neg_one = -1; blas_int info = 0; scs_float wkopt = 0.0; #if VERBOSITY > 0 #define _STR_EXPAND(tok) #tok #define _STR(tok) _STR_EXPAND(tok) scs_printf("BLAS(func) = '%s'\n", _STR(BLAS(func))); #endif /* eigenvector decomp workspace */ for (i = 0; i < k->ssize; ++i) { if (k->s[i] > n_max) { n_max = (blas_int)k->s[i]; } } c->Xs = (scs_float *)scs_calloc(n_max * n_max, sizeof(scs_float)); c->Z = (scs_float *)scs_calloc(n_max * n_max, sizeof(scs_float)); c->e = (scs_float *)scs_calloc(n_max, sizeof(scs_float)); /* workspace query */ BLAS(syev) ("Vectors", "Lower", &n_max, c->Xs, &n_max, SCS_NULL, &wkopt, &neg_one, &info); if (info != 0) { scs_printf("FATAL: syev failure, info = %li\n", (long)info); return -1; } c->lwork = (blas_int)(wkopt + 1); /* +1 for int casting safety */ c->work = (scs_float *)scs_calloc(c->lwork, sizeof(scs_float)); if (!c->Xs || !c->Z || !c->e || !c->work) { return -1; } return 0; #else for (i = 0; i < k->ssize; i++) { if (k->s[i] > 1) { scs_printf( "FATAL: Cannot solve SDPs without linked blas+lapack libraries\n"); scs_printf( "Install blas+lapack and re-compile SCS with blas+lapack library " "locations\n"); return -1; } } return 0; #endif } /* size of X is get_sd_cone_size(n) */ static scs_int proj_semi_definite_cone(scs_float *X, const scs_int n, ScsConeWork *c) { /* project onto the positive semi-definite cone */ #ifdef USE_LAPACK scs_int i, first_idx; blas_int nb = (blas_int)n; blas_int ncols_z; blas_int nb_plus_one = (blas_int)(n + 1); blas_int one_int = 1; scs_float zero = 0., one = 1.; scs_float sqrt2 = SQRTF(2.0); scs_float sqrt2_inv = 1.0 / sqrt2; scs_float *Xs = c->Xs; scs_float *Z = c->Z; scs_float *e = c->e; scs_float *work = c->work; blas_int lwork = c->lwork; blas_int info = 0; scs_float sq_eig_pos; #endif if (n == 0) { return 0; } if (n == 1) { X[0] = MAX(X[0], 0.); return 0; } #ifdef USE_LAPACK /* copy lower triangular matrix into full matrix */ for (i = 0; i < n; ++i) { memcpy(&(Xs[i * (n + 1)]), &(X[i * n - ((i - 1) * i) / 2]), (n - i) * sizeof(scs_float)); } /* rescale so projection works, and matrix norm preserved see http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf pg 3 */ /* scale diags by sqrt(2) */ BLAS(scal)(&nb, &sqrt2, Xs, &nb_plus_one); /* not n_squared */ /* Solve eigenproblem, reuse workspaces */ BLAS(syev)("Vectors", "Lower", &nb, Xs, &nb, e, work, &lwork, &info); if (info != 0) { scs_printf("WARN: LAPACK syev error, info = %i\n", (int)info); if (info < 0) { return info; } } first_idx = -1; /* e is eigvals in ascending order, find first entry > 0 */ for (i = 0; i < n; ++i) { if (e[i] > 0) { first_idx = i; break; } } if (first_idx == -1) { /* there are no positive eigenvalues, set X to 0 and return */ memset(X, 0, sizeof(scs_float) * get_sd_cone_size(n)); return 0; } /* Z is matrix of eigenvectors with positive eigenvalues */ memcpy(Z, &Xs[first_idx * n], sizeof(scs_float) * n * (n - first_idx)); /* scale Z by sqrt(eig) */ for (i = first_idx; i < n; ++i) { sq_eig_pos = SQRTF(e[i]); BLAS(scal)(&nb, &sq_eig_pos, &Z[(i - first_idx) * n], &one_int); } /* Xs = Z Z' = V E V' */ ncols_z = (blas_int)(n - first_idx); BLAS(syrk)("Lower", "NoTrans", &nb, &ncols_z, &one, Z, &nb, &zero, Xs, &nb); /* undo rescaling: scale diags by 1/sqrt(2) */ BLAS(scal)(&nb, &sqrt2_inv, Xs, &nb_plus_one); /* not n_squared */ /* extract just lower triangular matrix */ for (i = 0; i < n; ++i) { memcpy(&(X[i * n - ((i - 1) * i) / 2]), &(Xs[i * (n + 1)]), (n - i) * sizeof(scs_float)); } return 0; #else scs_printf("FAILURE: solving SDP but no blas/lapack libraries were found!\n"); scs_printf("SCS will return nonsense!\n"); SCS(scale_array)(X, NAN, n); return -1; #endif } static scs_float pow_calc_x(scs_float r, scs_float xh, scs_float rh, scs_float a) { scs_float x = 0.5 * (xh + SQRTF(xh * xh + 4 * a * (rh - r) * r)); return MAX(x, 1e-12); } static scs_float pow_calcdxdr(scs_float x, scs_float xh, scs_float rh, scs_float r, scs_float a) { return a * (rh - 2 * r) / (2 * x - xh); } static scs_float pow_calc_f(scs_float x, scs_float y, scs_float r, scs_float a) { return POWF(x, a) * POWF(y, (1 - a)) - r; } static scs_float pow_calc_fp(scs_float x, scs_float y, scs_float dxdr, scs_float dydr, scs_float a) { return POWF(x, a) * POWF(y, (1 - a)) * (a * dxdr / x + (1 - a) * dydr / y) - 1; } /* * Routine to scale the limits of the box cone by the scaling diagonal mat D > 0 * * want (t, s) \in K <==> (t', s') \in K' * * (t', s') = (d0 * t, D s) (overloading D to mean D[1:]) * (up to scalar scaling factor which we can ignore due to conic prooperty) * * K = { (t, s) | t * l <= s <= t * u, t >= 0 } => * { (t, s) | d0 * t * D l / d0 <= D s <= d0 * t D u / d0, t >= 0 } => * { (t', s') | t' * l' <= s' <= t' u', t >= 0 } = K' * where l' = D l / d0, u' = D u / d0. */ static void normalize_box_cone(ScsConeWork *c, scs_float *D, scs_int bsize) { scs_int j; for (j = 0; j < bsize - 1; j++) { if (c->bu[j] >= MAX_BOX_VAL) { c->bu[j] = INFINITY; } else { c->bu[j] = D ? D[j + 1] * c->bu[j] / D[0] : c->bu[j]; } if (c->bl[j] <= -MAX_BOX_VAL) { c->bl[j] = -INFINITY; } else { c->bl[j] = D ? D[j + 1] * c->bl[j] / D[0] : c->bl[j]; } } } /* Project onto { (t, s) | t * l <= s <= t * u, t >= 0 }, Newton's method on t tx = [t; s], total length = bsize, under Euclidean metric 1/r_box. */ static scs_float proj_box_cone(scs_float *tx, const scs_float *bl, const scs_float *bu, scs_int bsize, scs_float t_warm_start, scs_float *r_box) { scs_float *x, gt, ht, t_prev, t = t_warm_start; scs_float rho_t = 1, *rho = SCS_NULL, r; scs_int iter, j; if (bsize == 1) { /* special case */ tx[0] = MAX(tx[0], 0.0); return tx[0]; } x = &(tx[1]); if (r_box) { rho_t = 1.0 / r_box[0]; rho = &(r_box[1]); } /* should only require about 5 or so iterations, 1 or 2 if warm-started */ for (iter = 0; iter < BOX_CONE_MAX_ITERS; iter++) { t_prev = t; gt = rho_t * (t - tx[0]); /* gradient */ ht = rho_t; /* hessian */ for (j = 0; j < bsize - 1; j++) { r = rho ? 1.0 / rho[j] : 1.; if (x[j] > t * bu[j]) { gt += r * (t * bu[j] - x[j]) * bu[j]; /* gradient */ ht += r * bu[j] * bu[j]; /* hessian */ } else if (x[j] < t * bl[j]) { gt += r * (t * bl[j] - x[j]) * bl[j]; /* gradient */ ht += r * bl[j] * bl[j]; /* hessian */ } } t = MAX(t - gt / MAX(ht, 1e-8), 0.); /* newton step */ #if VERBOSITY > 3 scs_printf("iter %i, t_new %1.3e, t_prev %1.3e, gt %1.3e, ht %1.3e\n", iter, t, t_prev, gt, ht); scs_printf("ABS(gt / (ht + 1e-6)) %.4e, ABS(t - t_prev) %.4e\n", ABS(gt / (ht + 1e-6)), ABS(t - t_prev)); #endif /* TODO: sometimes this check can fail (ie, declare convergence before it * should) if ht is very large, which can happen with some pathological * problems. */ if (ABS(gt / MAX(ht, 1e-6)) < 1e-12 * MAX(t, 1.) || ABS(t - t_prev) < 1e-11 * MAX(t, 1.)) { break; } } if (iter == BOX_CONE_MAX_ITERS) { scs_printf("warning: box cone proj hit maximum %i iters\n", (int)iter); } for (j = 0; j < bsize - 1; j++) { if (x[j] > t * bu[j]) { x[j] = t * bu[j]; } else if (x[j] < t * bl[j]) { x[j] = t * bl[j]; } /* x[j] unchanged otherwise */ } tx[0] = t; #if VERBOSITY > 3 scs_printf("box cone iters %i\n", (int)iter + 1); #endif return t; } /* project onto SOC of size q*/ static void proj_soc(scs_float *x, scs_int q) { if (q == 0) { return; } if (q == 1) { x[0] = MAX(x[0], 0.); return; } scs_float v1 = x[0]; scs_float s = SCS(norm_2)(&(x[1]), q - 1); scs_float alpha = (s + v1) / 2.0; if (s <= v1) { return; } else if (s <= -v1) { memset(&(x[0]), 0, q * sizeof(scs_float)); } else { x[0] = alpha; SCS(scale_array)(&(x[1]), alpha / s, q - 1); } } static void proj_power_cone(scs_float *v, scs_float a) { scs_float xh = v[0], yh = v[1], rh = ABS(v[2]); scs_float x = 0.0, y = 0.0, r; scs_int i; /* v in K_a */ if (xh >= 0 && yh >= 0 && CONE_THRESH + POWF(xh, a) * POWF(yh, (1 - a)) >= rh) { return; } /* -v in K_a^* */ if (xh <= 0 && yh <= 0 && CONE_THRESH + POWF(-xh, a) * POWF(-yh, 1 - a) >= rh * POWF(a, a) * POWF(1 - a, 1 - a)) { v[0] = v[1] = v[2] = 0; return; } r = rh / 2; for (i = 0; i < POW_CONE_MAX_ITERS; ++i) { scs_float f, fp, dxdr, dydr; x = pow_calc_x(r, xh, rh, a); y = pow_calc_x(r, yh, rh, 1 - a); f = pow_calc_f(x, y, r, a); if (ABS(f) < CONE_TOL) { break; } dxdr = pow_calcdxdr(x, xh, rh, r, a); dydr = pow_calcdxdr(y, yh, rh, r, (1 - a)); fp = pow_calc_fp(x, y, dxdr, dydr, a); r = MAX(r - f / fp, 0); r = MIN(r, rh); } v[0] = x; v[1] = y; v[2] = (v[2] < 0) ? -(r) : (r); } /* project onto the primal K cone in the paper */ /* the r_y vector determines the INVERSE metric, ie, project under the * diag(r_y)^-1 norm. */ static scs_int proj_cone(scs_float *x, const ScsCone *k, ScsConeWork *c, scs_int normalize, scs_float *r_y) { scs_int i, status; scs_int count = 0; scs_float *r_box = SCS_NULL; scs_float *bu, *bl; if (k->z) { /* doesn't use r_y */ /* project onto primal zero / dual free cone */ memset(x, 0, k->z * sizeof(scs_float)); count += k->z; } if (k->l) { /* doesn't use r_y */ /* project onto positive orthant */ for (i = count; i < count + k->l; ++i) { x[i] = MAX(x[i], 0.0); } count += k->l; } if (k->bsize) { /* DOES use r_y */ if (r_y) { r_box = &(r_y[count]); } /* project onto box cone */ bu = normalize ? c->bu : k->bu; bl = normalize ? c->bl : k->bl; c->box_t_warm_start = proj_box_cone(&(x[count]), bl, bu, k->bsize, c->box_t_warm_start, r_box); count += k->bsize; /* since b = (t,s), len(s) = bsize - 1 */ } if (k->qsize && k->q) { /* doesn't use r_y */ /* project onto second-order cones */ for (i = 0; i < k->qsize; ++i) { proj_soc(&(x[count]), k->q[i]); count += k->q[i]; } } if (k->ssize && k->s) { /* doesn't use r_y */ /* project onto PSD cones */ for (i = 0; i < k->ssize; ++i) { status = proj_semi_definite_cone(&(x[count]), k->s[i], c); if (status < 0) { return status; } count += get_sd_cone_size(k->s[i]); } } if (k->ep) { /* doesn't use r_y */ /* * exponential cone is not self dual, if s \in K * then y \in K^* and so if K is the primal cone * here we project onto K^*, via Moreau * \Pi_C^*(y) = y + \Pi_C(-y) */ #ifdef _OPENMP #pragma omp parallel for #endif for (i = 0; i < k->ep; ++i) { proj_exp_cone(&(x[count + 3 * i])); } count += 3 * k->ep; } /* dual exponential cone */ if (k->ed) { /* doesn't use r_y */ /* * exponential cone is not self dual, if s \in K * then y \in K^* and so if K is the primal cone * here we project onto K^*, via Moreau * \Pi_C^*(y) = y + \Pi_C(-y) */ scs_int idx; scs_float r, s, t; SCS(scale_array)(&(x[count]), -1, 3 * k->ed); /* x = -x; */ #ifdef _OPENMP #pragma omp parallel for private(r, s, t, idx) #endif for (i = 0; i < k->ed; ++i) { idx = count + 3 * i; r = x[idx]; s = x[idx + 1]; t = x[idx + 2]; proj_exp_cone(&(x[idx])); x[idx] -= r; x[idx + 1] -= s; x[idx + 2] -= t; } count += 3 * k->ed; } if (k->psize && k->p) { /* doesn't use r_y */ scs_float v[3]; scs_int idx; /* don't use openmp for power cone ifdef _OPENMP pragma omp parallel for private(v, idx) endif */ for (i = 0; i < k->psize; ++i) { /* doesn't use r_y */ idx = count + 3 * i; if (k->p[i] >= 0) { /* primal power cone */ proj_power_cone(&(x[idx]), k->p[i]); } else { /* dual power cone, using Moreau */ v[0] = -x[idx]; v[1] = -x[idx + 1]; v[2] = -x[idx + 2]; proj_power_cone(v, -k->p[i]); x[idx] += v[0]; x[idx + 1] += v[1]; x[idx + 2] += v[2]; } } count += 3 * k->psize; } /* project onto OTHER cones */ return 0; } ScsConeWork *SCS(init_cone)(const ScsCone *k, scs_int m) { ScsConeWork *c = (ScsConeWork *)scs_calloc(1, sizeof(ScsConeWork)); c->k = k; c->m = m; c->scaled_cones = 0; set_cone_boundaries(k, c); c->s = (scs_float *)scs_calloc(m, sizeof(scs_float)); if (k->ssize && k->s) { if (set_up_sd_cone_work_space(c, k) < 0) { SCS(finish_cone)(c); return SCS_NULL; } } return c; } void scale_box_cone(const ScsCone *k, ScsConeWork *c, ScsScaling *scal) { if (k->bsize && k->bu && k->bl) { c->box_t_warm_start = 1.; if (scal) { c->bu = (scs_float *)scs_calloc(k->bsize - 1, sizeof(scs_float)); c->bl = (scs_float *)scs_calloc(k->bsize - 1, sizeof(scs_float)); memcpy(c->bu, k->bu, (k->bsize - 1) * sizeof(scs_float)); memcpy(c->bl, k->bl, (k->bsize - 1) * sizeof(scs_float)); /* also does some sanitizing */ normalize_box_cone(c, &(scal->D[k->z + k->l]), k->bsize); } } } /* Outward facing cone projection routine, performs projection in-place. If normalize > 0 then will use normalized (equilibrated) cones if applicable. Moreau decomposition for R-norm projections: `x + R^{-1} \Pi_{C^*}^{R^{-1}} ( - R x ) = \Pi_C^R ( x )` where \Pi^R_C is the projection onto C under the R-norm: `||x||_R = \sqrt{x ' R x}`. */ scs_int SCS(proj_dual_cone)(scs_float *x, ScsConeWork *c, ScsScaling *scal, scs_float *r_y) { scs_int status, i; const ScsCone *k = c->k; if (!c->scaled_cones) { scale_box_cone(k, c, scal); c->scaled_cones = 1; } /* copy s = x */ memcpy(c->s, x, c->m * sizeof(scs_float)); /* x -> - Rx */ for (i = 0; i < c->m; ++i) { x[i] *= r_y ? -r_y[i] : -1; } /* project -x onto cone, x -> \Pi_{C^*}^{R^{-1}}(-x) under r_y metric */ status = proj_cone(x, k, c, scal ? 1 : 0, r_y); /* return x + R^{-1} \Pi_{C^*}^{R^{-1}} ( -x ) */ for (i = 0; i < c->m; ++i) { if (r_y) { x[i] = x[i] / r_y[i] + c->s[i]; } else { x[i] += c->s[i]; } } return status; }