// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "assembler-arm.h" #include "codegen-inl.h" #include "disasm.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) // Helper function used from LoadIC/CallIC GenerateNormal. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss, Register t0, Register t1) { // Register use: // // t0 - used to hold the property dictionary. // // t1 - initially the receiver // - used for the index into the property dictionary // - holds the result on exit. // // r3 - used as temporary and to hold the capacity of the property // dictionary. // // r2 - holds the name of the property and is unchanged. // r4 - used as temporary. Label done; // Check for the absence of an interceptor. // Load the map into t0. __ ldr(t0, FieldMemOperand(t1, JSObject::kMapOffset)); // Bail out if the receiver has a named interceptor. __ ldrb(r3, FieldMemOperand(t0, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kHasNamedInterceptor)); __ b(nz, miss); // Bail out if we have a JS global proxy object. __ ldrb(r3, FieldMemOperand(t0, Map::kInstanceTypeOffset)); __ cmp(r3, Operand(JS_GLOBAL_PROXY_TYPE)); __ b(eq, miss); // Possible work-around for http://crbug.com/16276. // See also: http://codereview.chromium.org/155418. __ cmp(r3, Operand(JS_GLOBAL_OBJECT_TYPE)); __ b(eq, miss); __ cmp(r3, Operand(JS_BUILTINS_OBJECT_TYPE)); __ b(eq, miss); // Check that the properties array is a dictionary. __ ldr(t0, FieldMemOperand(t1, JSObject::kPropertiesOffset)); __ ldr(r3, FieldMemOperand(t0, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r3, ip); __ b(ne, miss); // Compute the capacity mask. const int kCapacityOffset = StringDictionary::kHeaderSize + StringDictionary::kCapacityIndex * kPointerSize; __ ldr(r3, FieldMemOperand(t0, kCapacityOffset)); __ mov(r3, Operand(r3, ASR, kSmiTagSize)); // convert smi to int __ sub(r3, r3, Operand(1)); const int kElementsStartOffset = StringDictionary::kHeaderSize + StringDictionary::kElementsStartIndex * kPointerSize; // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. static const int kProbes = 4; for (int i = 0; i < kProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ ldr(r4, FieldMemOperand(r2, String::kHashFieldOffset)); if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. ASSERT(StringDictionary::GetProbeOffset(i) < 1 << (32 - String::kHashFieldOffset)); __ add(r4, r4, Operand( StringDictionary::GetProbeOffset(i) << String::kHashShift)); } __ and_(r4, r3, Operand(r4, LSR, String::kHashShift)); // Scale the index by multiplying by the element size. ASSERT(StringDictionary::kEntrySize == 3); __ add(r4, r4, Operand(r4, LSL, 1)); // r4 = r4 * 3 // Check if the key is identical to the name. __ add(r4, t0, Operand(r4, LSL, 2)); __ ldr(ip, FieldMemOperand(r4, kElementsStartOffset)); __ cmp(r2, Operand(ip)); if (i != kProbes - 1) { __ b(eq, &done); } else { __ b(ne, miss); } } // Check that the value is a normal property. __ bind(&done); // r4 == t0 + 4*index __ ldr(r3, FieldMemOperand(r4, kElementsStartOffset + 2 * kPointerSize)); __ tst(r3, Operand(PropertyDetails::TypeField::mask() << kSmiTagSize)); __ b(ne, miss); // Get the value at the masked, scaled index and return. __ ldr(t1, FieldMemOperand(r4, kElementsStartOffset + 1 * kPointerSize)); } static void GenerateNumberDictionaryLoad(MacroAssembler* masm, Label* miss, Register elements, Register key, Register t0, Register t1, Register t2) { // Register use: // // elements - holds the slow-case elements of the receiver and is unchanged. // // key - holds the smi key on entry and is unchanged if a branch is // performed to the miss label. // // Scratch registers: // // t0 - holds the untagged key on entry and holds the hash once computed. // Holds the result on exit if the load succeeded. // // t1 - used to hold the capacity mask of the dictionary // // t2 - used for the index into the dictionary. Label done; // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); __ mvn(t1, Operand(t0)); __ add(t0, t1, Operand(t0, LSL, 15)); // hash = hash ^ (hash >> 12); __ eor(t0, t0, Operand(t0, LSR, 12)); // hash = hash + (hash << 2); __ add(t0, t0, Operand(t0, LSL, 2)); // hash = hash ^ (hash >> 4); __ eor(t0, t0, Operand(t0, LSR, 4)); // hash = hash * 2057; __ mov(t1, Operand(2057)); __ mul(t0, t0, t1); // hash = hash ^ (hash >> 16); __ eor(t0, t0, Operand(t0, LSR, 16)); // Compute the capacity mask. __ ldr(t1, FieldMemOperand(elements, NumberDictionary::kCapacityOffset)); __ mov(t1, Operand(t1, ASR, kSmiTagSize)); // convert smi to int __ sub(t1, t1, Operand(1)); // Generate an unrolled loop that performs a few probes before giving up. static const int kProbes = 4; for (int i = 0; i < kProbes; i++) { // Use t2 for index calculations and keep the hash intact in t0. __ mov(t2, t0); // Compute the masked index: (hash + i + i * i) & mask. if (i > 0) { __ add(t2, t2, Operand(NumberDictionary::GetProbeOffset(i))); } __ and_(t2, t2, Operand(t1)); // Scale the index by multiplying by the element size. ASSERT(NumberDictionary::kEntrySize == 3); __ add(t2, t2, Operand(t2, LSL, 1)); // t2 = t2 * 3 // Check if the key is identical to the name. __ add(t2, elements, Operand(t2, LSL, kPointerSizeLog2)); __ ldr(ip, FieldMemOperand(t2, NumberDictionary::kElementsStartOffset)); __ cmp(key, Operand(ip)); if (i != kProbes - 1) { __ b(eq, &done); } else { __ b(ne, miss); } } __ bind(&done); // Check that the value is a normal property. // t2: elements + (index * kPointerSize) const int kDetailsOffset = NumberDictionary::kElementsStartOffset + 2 * kPointerSize; __ ldr(t1, FieldMemOperand(t2, kDetailsOffset)); __ tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::mask()))); __ b(ne, miss); // Get the value at the masked, scaled index and return. const int kValueOffset = NumberDictionary::kElementsStartOffset + kPointerSize; __ ldr(t0, FieldMemOperand(t2, kValueOffset)); } void LoadIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- Label miss; StubCompiler::GenerateLoadArrayLength(masm, r0, r3, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateStringLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- Label miss; StubCompiler::GenerateLoadStringLength(masm, r0, r1, r3, &miss); // Cache miss: Jump to runtime. __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- Label miss; StubCompiler::GenerateLoadFunctionPrototype(masm, r0, r1, r3, &miss); __ bind(&miss); StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); } // Defined in ic.cc. Object* CallIC_Miss(Arguments args); void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- Label number, non_number, non_string, boolean, probe, miss; // Get the receiver of the function from the stack into r1. __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::CALL_IC, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc); StubCache::GenerateProbe(masm, flags, r1, r2, r3, no_reg); // If the stub cache probing failed, the receiver might be a value. // For value objects, we use the map of the prototype objects for // the corresponding JSValue for the cache and that is what we need // to probe. // // Check for number. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &number); __ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE); __ b(ne, &non_number); __ bind(&number); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::NUMBER_FUNCTION_INDEX, r1); __ b(&probe); // Check for string. __ bind(&non_number); __ cmp(r3, Operand(FIRST_NONSTRING_TYPE)); __ b(hs, &non_string); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::STRING_FUNCTION_INDEX, r1); __ b(&probe); // Check for boolean. __ bind(&non_string); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r1, ip); __ b(eq, &boolean); __ LoadRoot(ip, Heap::kFalseValueRootIndex); __ cmp(r1, ip); __ b(ne, &miss); __ bind(&boolean); StubCompiler::GenerateLoadGlobalFunctionPrototype( masm, Context::BOOLEAN_FUNCTION_INDEX, r1); // Probe the stub cache for the value object. __ bind(&probe); StubCache::GenerateProbe(masm, flags, r1, r2, r3, no_reg); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm, argc); } static void GenerateNormalHelper(MacroAssembler* masm, int argc, bool is_global_object, Label* miss, Register scratch) { // Search dictionary - put result in register r1. GenerateDictionaryLoad(masm, miss, r0, r1); // Check that the value isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, miss); // Check that the value is a JSFunction. __ CompareObjectType(r1, scratch, scratch, JS_FUNCTION_TYPE); __ b(ne, miss); // Patch the receiver with the global proxy if necessary. if (is_global_object) { __ ldr(r0, MemOperand(sp, argc * kPointerSize)); __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset)); __ str(r0, MemOperand(sp, argc * kPointerSize)); } // Invoke the function. ParameterCount actual(argc); __ InvokeFunction(r1, actual, JUMP_FUNCTION); } void CallIC::GenerateNormal(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- Label miss, global_object, non_global_object; // Get the receiver of the function from the stack into r1. __ ldr(r1, MemOperand(sp, argc * kPointerSize)); // Check that the receiver isn't a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(eq, &miss); // Check that the receiver is a valid JS object. Put the map in r3. __ CompareObjectType(r1, r3, r0, FIRST_JS_OBJECT_TYPE); __ b(lt, &miss); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object. __ cmp(r0, Operand(JS_GLOBAL_OBJECT_TYPE)); __ b(eq, &global_object); __ cmp(r0, Operand(JS_BUILTINS_OBJECT_TYPE)); __ b(ne, &non_global_object); // Accessing global object: Load and invoke. __ bind(&global_object); // Check that the global object does not require access checks. __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &miss); GenerateNormalHelper(masm, argc, true, &miss, r4); // Accessing non-global object: Check for access to global proxy. Label global_proxy, invoke; __ bind(&non_global_object); __ cmp(r0, Operand(JS_GLOBAL_PROXY_TYPE)); __ b(eq, &global_proxy); // Check that the non-global, non-global-proxy object does not // require access checks. __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &miss); __ bind(&invoke); GenerateNormalHelper(masm, argc, false, &miss, r4); // Global object access: Check access rights. __ bind(&global_proxy); __ CheckAccessGlobalProxy(r1, r0, &miss); __ b(&invoke); // Cache miss: Jump to runtime. __ bind(&miss); GenerateMiss(masm, argc); } void CallIC::GenerateMiss(MacroAssembler* masm, int argc) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // ----------------------------------- // Get the receiver of the function from the stack. __ ldr(r3, MemOperand(sp, argc * kPointerSize)); __ EnterInternalFrame(); // Push the receiver and the name of the function. __ Push(r3, r2); // Call the entry. __ mov(r0, Operand(2)); __ mov(r1, Operand(ExternalReference(IC_Utility(kCallIC_Miss)))); CEntryStub stub(1); __ CallStub(&stub); // Move result to r1 and leave the internal frame. __ mov(r1, Operand(r0)); __ LeaveInternalFrame(); // Check if the receiver is a global object of some sort. Label invoke, global; __ ldr(r2, MemOperand(sp, argc * kPointerSize)); // receiver __ tst(r2, Operand(kSmiTagMask)); __ b(eq, &invoke); __ CompareObjectType(r2, r3, r3, JS_GLOBAL_OBJECT_TYPE); __ b(eq, &global); __ cmp(r3, Operand(JS_BUILTINS_OBJECT_TYPE)); __ b(ne, &invoke); // Patch the receiver on the stack. __ bind(&global); __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset)); __ str(r2, MemOperand(sp, argc * kPointerSize)); // Invoke the function. ParameterCount actual(argc); __ bind(&invoke); __ InvokeFunction(r1, actual, JUMP_FUNCTION); } // Defined in ic.cc. Object* LoadIC_Miss(Arguments args); void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- // Probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, r0, r2, r3, no_reg); // Cache miss: Jump to runtime. GenerateMiss(masm); } void LoadIC::GenerateNormal(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- Label miss, probe, global; // Check that the receiver isn't a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &miss); // Check that the receiver is a valid JS object. Put the map in r3. __ CompareObjectType(r0, r3, r1, FIRST_JS_OBJECT_TYPE); __ b(lt, &miss); // If this assert fails, we have to check upper bound too. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); // Check for access to global object (unlikely). __ cmp(r1, Operand(JS_GLOBAL_PROXY_TYPE)); __ b(eq, &global); // Check for non-global object that requires access check. __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &miss); __ bind(&probe); GenerateDictionaryLoad(masm, &miss, r1, r0); __ Ret(); // Global object access: Check access rights. __ bind(&global); __ CheckAccessGlobalProxy(r0, r1, &miss); __ b(&probe); // Cache miss: Restore receiver from stack and jump to runtime. __ bind(&miss); GenerateMiss(masm); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r2 : name // -- lr : return address // -- r0 : receiver // -- sp[0] : receiver // ----------------------------------- __ mov(r3, r0); __ Push(r3, r2); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss)); __ TailCallExternalReference(ref, 2, 1); } static inline bool IsInlinedICSite(Address address, Address* inline_end_address) { // If the instruction after the call site is not the pseudo instruction nop1 // then this is not related to an inlined in-object property load. The nop1 // instruction is located just after the call to the IC in the deferred code // handling the miss in the inlined code. After the nop1 instruction there is // a branch instruction for jumping back from the deferred code. Address address_after_call = address + Assembler::kCallTargetAddressOffset; Instr instr_after_call = Assembler::instr_at(address_after_call); if (!Assembler::IsNop(instr_after_call, PROPERTY_ACCESS_INLINED)) { return false; } Address address_after_nop = address_after_call + Assembler::kInstrSize; Instr instr_after_nop = Assembler::instr_at(address_after_nop); ASSERT(Assembler::IsBranch(instr_after_nop)); // Find the end of the inlined code for handling the load. int b_offset = Assembler::GetBranchOffset(instr_after_nop) + Assembler::kPcLoadDelta; ASSERT(b_offset < 0); // Jumping back from deferred code. *inline_end_address = address_after_nop + b_offset; return true; } void LoadIC::ClearInlinedVersion(Address address) { // Reset the map check of the inlined in-object property load (if present) to // guarantee failure by holding an invalid map (the null value). The offset // can be patched to anything. PatchInlinedLoad(address, Heap::null_value(), 0); } bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) { // Find the end of the inlined code for handling the load if this is an // inlined IC call site. Address inline_end_address; if (!IsInlinedICSite(address, &inline_end_address)) return false; // Patch the offset of the property load instruction (ldr r0, [r1, #+XXX]). // The immediate must be representable in 12 bits. ASSERT((JSObject::kMaxInstanceSize - JSObject::kHeaderSize) < (1 << 12)); Address ldr_property_instr_address = inline_end_address - Assembler::kInstrSize; ASSERT(Assembler::IsLdrRegisterImmediate( Assembler::instr_at(ldr_property_instr_address))); Instr ldr_property_instr = Assembler::instr_at(ldr_property_instr_address); ldr_property_instr = Assembler::SetLdrRegisterImmediateOffset( ldr_property_instr, offset - kHeapObjectTag); Assembler::instr_at_put(ldr_property_instr_address, ldr_property_instr); // Indicate that code has changed. CPU::FlushICache(ldr_property_instr_address, 1 * Assembler::kInstrSize); // Patch the map check. Address ldr_map_instr_address = inline_end_address - 4 * Assembler::kInstrSize; Assembler::set_target_address_at(ldr_map_instr_address, reinterpret_cast
(map)); return true; } void KeyedLoadIC::ClearInlinedVersion(Address address) { // Reset the map check of the inlined keyed load (if present) to // guarantee failure by holding an invalid map (the null value). PatchInlinedLoad(address, Heap::null_value()); } bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) { Address inline_end_address; if (!IsInlinedICSite(address, &inline_end_address)) return false; // Patch the map check. Address ldr_map_instr_address = inline_end_address - 18 * Assembler::kInstrSize; Assembler::set_target_address_at(ldr_map_instr_address, reinterpret_cast
(map)); return true; } void KeyedStoreIC::ClearInlinedVersion(Address address) { // Insert null as the elements map to check for. This will make // sure that the elements fast-case map check fails so that control // flows to the IC instead of the inlined version. PatchInlinedStore(address, Heap::null_value()); } void KeyedStoreIC::RestoreInlinedVersion(Address address) { // Restore the fast-case elements map check so that the inlined // version can be used again. PatchInlinedStore(address, Heap::fixed_array_map()); } bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) { // Find the end of the inlined code for handling the store if this is an // inlined IC call site. Address inline_end_address; if (!IsInlinedICSite(address, &inline_end_address)) return false; // Patch the map check. Address ldr_map_instr_address = inline_end_address - 5 * Assembler::kInstrSize; Assembler::set_target_address_at(ldr_map_instr_address, reinterpret_cast
(map)); return true; } Object* KeyedLoadIC_Miss(Arguments args); void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- sp[0] : key // -- sp[4] : receiver // ----------------------------------- __ ldr(r1, MemOperand(sp, kPointerSize)); __ Push(r1, r0); ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss)); __ TailCallExternalReference(ref, 2, 1); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- sp[0] : key // -- sp[4] : receiver // ----------------------------------- __ ldr(r1, MemOperand(sp, kPointerSize)); __ Push(r1, r0); __ TailCallRuntime(Runtime::kGetProperty, 2, 1); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- sp[0] : key // -- sp[4] : receiver // ----------------------------------- Label slow, fast, check_pixel_array, check_number_dictionary; // Get the object from the stack. __ ldr(r1, MemOperand(sp, kPointerSize)); // Check that the object isn't a smi. __ BranchOnSmi(r1, &slow); // Get the map of the receiver. __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); // Check bit field. __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset)); __ tst(r3, Operand(kSlowCaseBitFieldMask)); __ b(ne, &slow); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing into string // objects work as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); __ cmp(r2, Operand(JS_OBJECT_TYPE)); __ b(lt, &slow); // Check that the key is a smi. __ BranchOnNotSmi(r0, &slow); // Save key in r2 in case we want it for the number dictionary case. __ mov(r2, r0); __ mov(r0, Operand(r0, ASR, kSmiTagSize)); // Get the elements array of the object. __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); __ cmp(r3, ip); __ b(ne, &check_pixel_array); // Check that the key (index) is within bounds. __ ldr(r3, FieldMemOperand(r1, Array::kLengthOffset)); __ cmp(r0, r3); __ b(hs, &slow); // Fast case: Do the load. __ add(r3, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ ldr(r0, MemOperand(r3, r0, LSL, kPointerSizeLog2)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(r0, ip); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ b(eq, &slow); __ Ret(); // Check whether the elements is a pixel array. __ bind(&check_pixel_array); __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex); __ cmp(r3, ip); __ b(ne, &check_number_dictionary); __ ldr(ip, FieldMemOperand(r1, PixelArray::kLengthOffset)); __ cmp(r0, ip); __ b(hs, &slow); __ ldr(ip, FieldMemOperand(r1, PixelArray::kExternalPointerOffset)); __ ldrb(r0, MemOperand(ip, r0)); __ mov(r0, Operand(r0, LSL, kSmiTagSize)); // Tag result as smi. __ Ret(); __ bind(&check_number_dictionary); // Check whether the elements is a number dictionary. // r0: untagged index // r1: elements // r2: key __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r3, ip); __ b(ne, &slow); GenerateNumberDictionaryLoad(masm, &slow, r1, r2, r0, r3, r4); __ Ret(); // Slow case: Push extra copies of the arguments (2). __ bind(&slow); __ IncrementCounter(&Counters::keyed_load_generic_slow, 1, r0, r1); __ ldr(r0, MemOperand(sp, 0)); GenerateRuntimeGetProperty(masm); } void KeyedLoadIC::GenerateString(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- sp[0] : key // -- sp[4] : receiver // ----------------------------------- Label miss; Label index_not_smi; Label index_out_of_range; Label slow_char_code; Label got_char_code; // Get the object from the stack. __ ldr(r1, MemOperand(sp, kPointerSize)); Register object = r1; Register index = r0; Register code = r2; Register scratch = r3; StringHelper::GenerateFastCharCodeAt(masm, object, index, scratch, code, &miss, // When not a string. &index_not_smi, &index_out_of_range, &slow_char_code); // If we didn't bail out, code register contains smi tagged char // code. __ bind(&got_char_code); StringHelper::GenerateCharFromCode(masm, code, scratch, r0, JUMP_FUNCTION); #ifdef DEBUG __ Abort("Unexpected fall-through from char from code tail call"); #endif // Check if key is a heap number. __ bind(&index_not_smi); __ CheckMap(index, scratch, Factory::heap_number_map(), &miss, true); // Push receiver and key on the stack (now that we know they are a // string and a number), and call runtime. __ bind(&slow_char_code); __ EnterInternalFrame(); __ Push(object, index); __ CallRuntime(Runtime::kStringCharCodeAt, 2); ASSERT(!code.is(r0)); __ mov(code, r0); __ LeaveInternalFrame(); // Check if the runtime call returned NaN char code. If yes, return // undefined. Otherwise, we can continue. if (FLAG_debug_code) { __ BranchOnSmi(code, &got_char_code); __ ldr(scratch, FieldMemOperand(code, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ cmp(scratch, ip); __ Assert(eq, "StringCharCodeAt must return smi or heap number"); } __ LoadRoot(scratch, Heap::kNanValueRootIndex); __ cmp(code, scratch); __ b(ne, &got_char_code); __ bind(&index_out_of_range); __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ Ret(); __ bind(&miss); GenerateGeneric(masm); } // Convert unsigned integer with specified number of leading zeroes in binary // representation to IEEE 754 double. // Integer to convert is passed in register hiword. // Resulting double is returned in registers hiword:loword. // This functions does not work correctly for 0. static void GenerateUInt2Double(MacroAssembler* masm, Register hiword, Register loword, Register scratch, int leading_zeroes) { const int meaningful_bits = kBitsPerInt - leading_zeroes - 1; const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits; const int mantissa_shift_for_hi_word = meaningful_bits - HeapNumber::kMantissaBitsInTopWord; const int mantissa_shift_for_lo_word = kBitsPerInt - mantissa_shift_for_hi_word; __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift)); if (mantissa_shift_for_hi_word > 0) { __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word)); __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word)); } else { __ mov(loword, Operand(0)); __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word)); } // If least significant bit of biased exponent was not 1 it was corrupted // by most significant bit of mantissa so we should fix that. if (!(biased_exponent & 1)) { __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift)); } } void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm, ExternalArrayType array_type) { // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- sp[0] : key // -- sp[4] : receiver // ----------------------------------- Label slow, failed_allocation; // Get the object from the stack. __ ldr(r1, MemOperand(sp, kPointerSize)); // r0: key // r1: receiver object // Check that the object isn't a smi __ BranchOnSmi(r1, &slow); // Check that the key is a smi. __ BranchOnNotSmi(r0, &slow); // Check that the object is a JS object. Load map into r2. __ CompareObjectType(r1, r2, r3, FIRST_JS_OBJECT_TYPE); __ b(lt, &slow); // Check that the receiver does not require access checks. We need // to check this explicitly since this generic stub does not perform // map checks. __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset)); __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &slow); // Check that the elements array is the appropriate type of // ExternalArray. // r0: index (as a smi) // r1: JSObject __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type)); __ cmp(r2, ip); __ b(ne, &slow); // Check that the index is in range. __ ldr(ip, FieldMemOperand(r1, ExternalArray::kLengthOffset)); __ cmp(r1, Operand(r0, ASR, kSmiTagSize)); // Unsigned comparison catches both negative and too-large values. __ b(lo, &slow); // r0: index (smi) // r1: elements array __ ldr(r1, FieldMemOperand(r1, ExternalArray::kExternalPointerOffset)); // r1: base pointer of external storage // We are not untagging smi key and instead work with it // as if it was premultiplied by 2. ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); switch (array_type) { case kExternalByteArray: __ ldrsb(r0, MemOperand(r1, r0, LSR, 1)); break; case kExternalUnsignedByteArray: __ ldrb(r0, MemOperand(r1, r0, LSR, 1)); break; case kExternalShortArray: __ ldrsh(r0, MemOperand(r1, r0, LSL, 0)); break; case kExternalUnsignedShortArray: __ ldrh(r0, MemOperand(r1, r0, LSL, 0)); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ ldr(r0, MemOperand(r1, r0, LSL, 1)); break; case kExternalFloatArray: if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ add(r0, r1, Operand(r0, LSL, 1)); __ vldr(s0, r0, 0); } else { __ ldr(r0, MemOperand(r1, r0, LSL, 1)); } break; default: UNREACHABLE(); break; } // For integer array types: // r0: value // For floating-point array type // s0: value (if VFP3 is supported) // r0: value (if VFP3 is not supported) if (array_type == kExternalIntArray) { // For the Int and UnsignedInt array types, we need to see whether // the value can be represented in a Smi. If not, we need to convert // it to a HeapNumber. Label box_int; __ cmp(r0, Operand(0xC0000000)); __ b(mi, &box_int); __ mov(r0, Operand(r0, LSL, kSmiTagSize)); __ Ret(); __ bind(&box_int); __ mov(r1, r0); // Allocate a HeapNumber for the int and perform int-to-double // conversion. __ AllocateHeapNumber(r0, r3, r4, &slow); if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ vmov(s0, r1); __ vcvt_f64_s32(d0, s0); __ sub(r1, r0, Operand(kHeapObjectTag)); __ vstr(d0, r1, HeapNumber::kValueOffset); __ Ret(); } else { WriteInt32ToHeapNumberStub stub(r1, r0, r3); __ TailCallStub(&stub); } } else if (array_type == kExternalUnsignedIntArray) { // The test is different for unsigned int values. Since we need // the value to be in the range of a positive smi, we can't // handle either of the top two bits being set in the value. if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); Label box_int, done; __ tst(r0, Operand(0xC0000000)); __ b(ne, &box_int); __ mov(r0, Operand(r0, LSL, kSmiTagSize)); __ Ret(); __ bind(&box_int); __ vmov(s0, r0); __ AllocateHeapNumber(r0, r1, r2, &slow); __ vcvt_f64_u32(d0, s0); __ sub(r1, r0, Operand(kHeapObjectTag)); __ vstr(d0, r1, HeapNumber::kValueOffset); __ Ret(); } else { // Check whether unsigned integer fits into smi. Label box_int_0, box_int_1, done; __ tst(r0, Operand(0x80000000)); __ b(ne, &box_int_0); __ tst(r0, Operand(0x40000000)); __ b(ne, &box_int_1); // Tag integer as smi and return it. __ mov(r0, Operand(r0, LSL, kSmiTagSize)); __ Ret(); __ bind(&box_int_0); // Integer does not have leading zeros. GenerateUInt2Double(masm, r0, r1, r2, 0); __ b(&done); __ bind(&box_int_1); // Integer has one leading zero. GenerateUInt2Double(masm, r0, r1, r2, 1); __ bind(&done); // Integer was converted to double in registers r0:r1. // Wrap it into a HeapNumber. __ AllocateHeapNumber(r2, r3, r5, &slow); __ str(r0, FieldMemOperand(r2, HeapNumber::kExponentOffset)); __ str(r1, FieldMemOperand(r2, HeapNumber::kMantissaOffset)); __ mov(r0, r2); __ Ret(); } } else if (array_type == kExternalFloatArray) { // For the floating-point array type, we need to always allocate a // HeapNumber. if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ AllocateHeapNumber(r0, r1, r2, &slow); __ vcvt_f64_f32(d0, s0); __ sub(r1, r0, Operand(kHeapObjectTag)); __ vstr(d0, r1, HeapNumber::kValueOffset); __ Ret(); } else { __ AllocateHeapNumber(r3, r1, r2, &slow); // VFP is not available, do manual single to double conversion. // r0: floating point value (binary32) // Extract mantissa to r1. __ and_(r1, r0, Operand(kBinary32MantissaMask)); // Extract exponent to r2. __ mov(r2, Operand(r0, LSR, kBinary32MantissaBits)); __ and_(r2, r2, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); Label exponent_rebiased; __ teq(r2, Operand(0x00)); __ b(eq, &exponent_rebiased); __ teq(r2, Operand(0xff)); __ mov(r2, Operand(0x7ff), LeaveCC, eq); __ b(eq, &exponent_rebiased); // Rebias exponent. __ add(r2, r2, Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); __ bind(&exponent_rebiased); __ and_(r0, r0, Operand(kBinary32SignMask)); __ orr(r0, r0, Operand(r2, LSL, HeapNumber::kMantissaBitsInTopWord)); // Shift mantissa. static const int kMantissaShiftForHiWord = kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; static const int kMantissaShiftForLoWord = kBitsPerInt - kMantissaShiftForHiWord; __ orr(r0, r0, Operand(r1, LSR, kMantissaShiftForHiWord)); __ mov(r1, Operand(r1, LSL, kMantissaShiftForLoWord)); __ str(r0, FieldMemOperand(r3, HeapNumber::kExponentOffset)); __ str(r1, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); __ mov(r0, r3); __ Ret(); } } else { __ mov(r0, Operand(r0, LSL, kSmiTagSize)); __ Ret(); } // Slow case: Load name and receiver from stack and jump to runtime. __ bind(&slow); __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r0, r1); __ ldr(r0, MemOperand(sp, 0)); GenerateRuntimeGetProperty(masm); } void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- lr : return address // -- r0 : key // -- sp[0] : key // -- sp[4] : receiver // ----------------------------------- Label slow; // Get the object from the stack. __ ldr(r1, MemOperand(sp, kPointerSize)); // Check that the receiver isn't a smi. __ BranchOnSmi(r1, &slow); // Check that the key is a smi. __ BranchOnNotSmi(r0, &slow); // Get the map of the receiver. __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); // Check that it has indexed interceptor and access checks // are not enabled for this object. __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset)); __ and_(r3, r3, Operand(kSlowCaseBitFieldMask)); __ cmp(r3, Operand(1 << Map::kHasIndexedInterceptor)); __ b(ne, &slow); // Everything is fine, call runtime. __ Push(r1, r0); // Receiver, key. // Perform tail call to the entry. __ TailCallExternalReference(ExternalReference( IC_Utility(kKeyedLoadPropertyWithInterceptor)), 2, 1); __ bind(&slow); GenerateMiss(masm); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r0 : value // -- lr : return address // -- sp[0] : key // -- sp[1] : receiver // ----------------------------------- __ ldm(ia, sp, r2.bit() | r3.bit()); __ Push(r3, r2, r0); ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss)); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r0 : value // -- lr : return address // -- sp[0] : key // -- sp[1] : receiver // ----------------------------------- __ ldm(ia, sp, r1.bit() | r3.bit()); // r0 == value, r1 == key, r3 == object __ Push(r3, r1, r0); __ TailCallRuntime(Runtime::kSetProperty, 3, 1); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) { // ---------- S t a t e -------------- // -- r0 : value // -- lr : return address // -- sp[0] : key // -- sp[1] : receiver // ----------------------------------- Label slow, fast, array, extra, exit, check_pixel_array; // Get the key and the object from the stack. __ ldm(ia, sp, r1.bit() | r3.bit()); // r1 = key, r3 = receiver // Check that the key is a smi. __ tst(r1, Operand(kSmiTagMask)); __ b(ne, &slow); // Check that the object isn't a smi. __ tst(r3, Operand(kSmiTagMask)); __ b(eq, &slow); // Get the map of the object. __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ ldrb(ip, FieldMemOperand(r2, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &slow); // Check if the object is a JS array or not. __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); __ cmp(r2, Operand(JS_ARRAY_TYPE)); // r1 == key. __ b(eq, &array); // Check that the object is some kind of JS object. __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE)); __ b(lt, &slow); // Object case: Check key against length in the elements array. __ ldr(r3, FieldMemOperand(r3, JSObject::kElementsOffset)); // Check that the object is in fast mode (not dictionary). __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); __ cmp(r2, ip); __ b(ne, &check_pixel_array); // Untag the key (for checking against untagged length in the fixed array). __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // Compute address to store into and check array bounds. __ add(r2, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2)); __ ldr(ip, FieldMemOperand(r3, FixedArray::kLengthOffset)); __ cmp(r1, Operand(ip)); __ b(lo, &fast); // Slow case: __ bind(&slow); GenerateRuntimeSetProperty(masm); // Check whether the elements is a pixel array. // r0: value // r1: index (as a smi), zero-extended. // r3: elements array __ bind(&check_pixel_array); __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex); __ cmp(r2, ip); __ b(ne, &slow); // Check that the value is a smi. If a conversion is needed call into the // runtime to convert and clamp. __ BranchOnNotSmi(r0, &slow); __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // Untag the key. __ ldr(ip, FieldMemOperand(r3, PixelArray::kLengthOffset)); __ cmp(r1, Operand(ip)); __ b(hs, &slow); __ mov(r4, r0); // Save the value. __ mov(r0, Operand(r0, ASR, kSmiTagSize)); // Untag the value. { // Clamp the value to [0..255]. Label done; __ tst(r0, Operand(0xFFFFFF00)); __ b(eq, &done); __ mov(r0, Operand(0), LeaveCC, mi); // 0 if negative. __ mov(r0, Operand(255), LeaveCC, pl); // 255 if positive. __ bind(&done); } __ ldr(r2, FieldMemOperand(r3, PixelArray::kExternalPointerOffset)); __ strb(r0, MemOperand(r2, r1)); __ mov(r0, Operand(r4)); // Return the original value. __ Ret(); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. // r0 == value, r1 == key, r2 == elements, r3 == object __ bind(&extra); __ b(ne, &slow); // do not leave holes in the array __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // untag __ ldr(ip, FieldMemOperand(r2, Array::kLengthOffset)); __ cmp(r1, Operand(ip)); __ b(hs, &slow); __ mov(r1, Operand(r1, LSL, kSmiTagSize)); // restore tag __ add(r1, r1, Operand(1 << kSmiTagSize)); // and increment __ str(r1, FieldMemOperand(r3, JSArray::kLengthOffset)); __ mov(r3, Operand(r2)); // NOTE: Computing the address to store into must take the fact // that the key has been incremented into account. int displacement = FixedArray::kHeaderSize - kHeapObjectTag - ((1 << kSmiTagSize) * 2); __ add(r2, r2, Operand(displacement)); __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); __ b(&fast); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode; if it is the // length is always a smi. // r0 == value, r3 == object __ bind(&array); __ ldr(r2, FieldMemOperand(r3, JSObject::kElementsOffset)); __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); __ cmp(r1, ip); __ b(ne, &slow); // Check the key against the length in the array, compute the // address to store into and fall through to fast case. __ ldr(r1, MemOperand(sp)); // restore key // r0 == value, r1 == key, r2 == elements, r3 == object. __ ldr(ip, FieldMemOperand(r3, JSArray::kLengthOffset)); __ cmp(r1, Operand(ip)); __ b(hs, &extra); __ mov(r3, Operand(r2)); __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(r2, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); // Fast case: Do the store. // r0 == value, r2 == address to store into, r3 == elements __ bind(&fast); __ str(r0, MemOperand(r2)); // Skip write barrier if the written value is a smi. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &exit); // Update write barrier for the elements array address. __ sub(r1, r2, Operand(r3)); __ RecordWrite(r3, r1, r2); __ bind(&exit); __ Ret(); } // Convert int passed in register ival to IEE 754 single precision // floating point value and store it into register fval. // If VFP3 is available use it for conversion. static void ConvertIntToFloat(MacroAssembler* masm, Register ival, Register fval, Register scratch1, Register scratch2) { if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); __ vmov(s0, ival); __ vcvt_f32_s32(s0, s0); __ vmov(fval, s0); } else { Label not_special, done; // Move sign bit from source to destination. This works because the sign // bit in the exponent word of the double has the same position and polarity // as the 2's complement sign bit in a Smi. ASSERT(kBinary32SignMask == 0x80000000u); __ and_(fval, ival, Operand(kBinary32SignMask), SetCC); // Negate value if it is negative. __ rsb(ival, ival, Operand(0), LeaveCC, ne); // We have -1, 0 or 1, which we treat specially. Register ival contains // absolute value: it is either equal to 1 (special case of -1 and 1), // greater than 1 (not a special case) or less than 1 (special case of 0). __ cmp(ival, Operand(1)); __ b(gt, ¬_special); // For 1 or -1 we need to or in the 0 exponent (biased). static const uint32_t exponent_word_for_1 = kBinary32ExponentBias << kBinary32ExponentShift; __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq); __ b(&done); __ bind(¬_special); // Count leading zeros. // Gets the wrong answer for 0, but we already checked for that case above. Register zeros = scratch2; __ CountLeadingZeros(ival, scratch1, zeros); // Compute exponent and or it into the exponent register. __ rsb(scratch1, zeros, Operand((kBitsPerInt - 1) + kBinary32ExponentBias)); __ orr(fval, fval, Operand(scratch1, LSL, kBinary32ExponentShift)); // Shift up the source chopping the top bit off. __ add(zeros, zeros, Operand(1)); // This wouldn't work for 1 and -1 as the shift would be 32 which means 0. __ mov(ival, Operand(ival, LSL, zeros)); // And the top (top 20 bits). __ orr(fval, fval, Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits)); __ bind(&done); } } static bool IsElementTypeSigned(ExternalArrayType array_type) { switch (array_type) { case kExternalByteArray: case kExternalShortArray: case kExternalIntArray: return true; case kExternalUnsignedByteArray: case kExternalUnsignedShortArray: case kExternalUnsignedIntArray: return false; default: UNREACHABLE(); return false; } } void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm, ExternalArrayType array_type) { // ---------- S t a t e -------------- // -- r0 : value // -- lr : return address // -- sp[0] : key // -- sp[1] : receiver // ----------------------------------- Label slow, check_heap_number; // Get the key and the object from the stack. __ ldm(ia, sp, r1.bit() | r2.bit()); // r1 = key, r2 = receiver // Check that the object isn't a smi. __ BranchOnSmi(r2, &slow); // Check that the object is a JS object. Load map into r3 __ CompareObjectType(r2, r3, r4, FIRST_JS_OBJECT_TYPE); __ b(le, &slow); // Check that the receiver does not require access checks. We need // to do this because this generic stub does not perform map checks. __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded)); __ b(ne, &slow); // Check that the key is a smi. __ BranchOnNotSmi(r1, &slow); // Check that the elements array is the appropriate type of // ExternalArray. // r0: value // r1: index (smi) // r2: object __ ldr(r2, FieldMemOperand(r2, JSObject::kElementsOffset)); __ ldr(r3, FieldMemOperand(r2, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type)); __ cmp(r3, ip); __ b(ne, &slow); // Check that the index is in range. __ mov(r1, Operand(r1, ASR, kSmiTagSize)); // Untag the index. __ ldr(ip, FieldMemOperand(r2, ExternalArray::kLengthOffset)); __ cmp(r1, ip); // Unsigned comparison catches both negative and too-large values. __ b(hs, &slow); // Handle both smis and HeapNumbers in the fast path. Go to the // runtime for all other kinds of values. // r0: value // r1: index (integer) // r2: array __ BranchOnNotSmi(r0, &check_heap_number); __ mov(r3, Operand(r0, ASR, kSmiTagSize)); // Untag the value. __ ldr(r2, FieldMemOperand(r2, ExternalArray::kExternalPointerOffset)); // r1: index (integer) // r2: base pointer of external storage // r3: value (integer) switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ strb(r3, MemOperand(r2, r1, LSL, 0)); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ strh(r3, MemOperand(r2, r1, LSL, 1)); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ str(r3, MemOperand(r2, r1, LSL, 2)); break; case kExternalFloatArray: // Need to perform int-to-float conversion. ConvertIntToFloat(masm, r3, r4, r5, r6); __ str(r4, MemOperand(r2, r1, LSL, 2)); break; default: UNREACHABLE(); break; } // r0: value __ Ret(); // r0: value // r1: index (integer) // r2: external array object __ bind(&check_heap_number); __ CompareObjectType(r0, r3, r4, HEAP_NUMBER_TYPE); __ b(ne, &slow); __ ldr(r2, FieldMemOperand(r2, ExternalArray::kExternalPointerOffset)); // The WebGL specification leaves the behavior of storing NaN and // +/-Infinity into integer arrays basically undefined. For more // reproducible behavior, convert these to zero. if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); // vldr requires offset to be a multiple of 4 so we can not // include -kHeapObjectTag into it. __ sub(r3, r0, Operand(kHeapObjectTag)); __ vldr(d0, r3, HeapNumber::kValueOffset); if (array_type == kExternalFloatArray) { __ vcvt_f32_f64(s0, d0); __ vmov(r3, s0); __ str(r3, MemOperand(r2, r1, LSL, 2)); } else { Label done; // Need to perform float-to-int conversion. // Test for NaN. __ vcmp(d0, d0); // Move vector status bits to normal status bits. __ vmrs(v8::internal::pc); __ mov(r3, Operand(0), LeaveCC, vs); // NaN converts to 0 __ b(vs, &done); // Test whether exponent equal to 0x7FF (infinity or NaN) __ vmov(r4, r3, d0); __ mov(r5, Operand(0x7FF00000)); __ and_(r3, r3, Operand(r5)); __ teq(r3, Operand(r5)); __ mov(r3, Operand(0), LeaveCC, eq); // Not infinity or NaN simply convert to int if (IsElementTypeSigned(array_type)) { __ vcvt_s32_f64(s0, d0, ne); } else { __ vcvt_u32_f64(s0, d0, ne); } __ vmov(r3, s0, ne); __ bind(&done); switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ strb(r3, MemOperand(r2, r1, LSL, 0)); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ strh(r3, MemOperand(r2, r1, LSL, 1)); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ str(r3, MemOperand(r2, r1, LSL, 2)); break; default: UNREACHABLE(); break; } } // r0: original value __ Ret(); } else { // VFP3 is not available do manual conversions __ ldr(r3, FieldMemOperand(r0, HeapNumber::kExponentOffset)); __ ldr(r4, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); if (array_type == kExternalFloatArray) { Label done, nan_or_infinity_or_zero; static const int kMantissaInHiWordShift = kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; static const int kMantissaInLoWordShift = kBitsPerInt - kMantissaInHiWordShift; // Test for all special exponent values: zeros, subnormal numbers, NaNs // and infinities. All these should be converted to 0. __ mov(r5, Operand(HeapNumber::kExponentMask)); __ and_(r6, r3, Operand(r5), SetCC); __ b(eq, &nan_or_infinity_or_zero); __ teq(r6, Operand(r5)); __ mov(r6, Operand(kBinary32ExponentMask), LeaveCC, eq); __ b(eq, &nan_or_infinity_or_zero); // Rebias exponent. __ mov(r6, Operand(r6, LSR, HeapNumber::kExponentShift)); __ add(r6, r6, Operand(kBinary32ExponentBias - HeapNumber::kExponentBias)); __ cmp(r6, Operand(kBinary32MaxExponent)); __ and_(r3, r3, Operand(HeapNumber::kSignMask), LeaveCC, gt); __ orr(r3, r3, Operand(kBinary32ExponentMask), LeaveCC, gt); __ b(gt, &done); __ cmp(r6, Operand(kBinary32MinExponent)); __ and_(r3, r3, Operand(HeapNumber::kSignMask), LeaveCC, lt); __ b(lt, &done); __ and_(r7, r3, Operand(HeapNumber::kSignMask)); __ and_(r3, r3, Operand(HeapNumber::kMantissaMask)); __ orr(r7, r7, Operand(r3, LSL, kMantissaInHiWordShift)); __ orr(r7, r7, Operand(r4, LSR, kMantissaInLoWordShift)); __ orr(r3, r7, Operand(r6, LSL, kBinary32ExponentShift)); __ bind(&done); __ str(r3, MemOperand(r2, r1, LSL, 2)); __ Ret(); __ bind(&nan_or_infinity_or_zero); __ and_(r7, r3, Operand(HeapNumber::kSignMask)); __ and_(r3, r3, Operand(HeapNumber::kMantissaMask)); __ orr(r6, r6, r7); __ orr(r6, r6, Operand(r3, LSL, kMantissaInHiWordShift)); __ orr(r3, r6, Operand(r4, LSR, kMantissaInLoWordShift)); __ b(&done); } else { bool is_signed_type = IsElementTypeSigned(array_type); int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt; int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000; Label done, sign; // Test for all special exponent values: zeros, subnormal numbers, NaNs // and infinities. All these should be converted to 0. __ mov(r5, Operand(HeapNumber::kExponentMask)); __ and_(r6, r3, Operand(r5), SetCC); __ mov(r3, Operand(0), LeaveCC, eq); __ b(eq, &done); __ teq(r6, Operand(r5)); __ mov(r3, Operand(0), LeaveCC, eq); __ b(eq, &done); // Unbias exponent. __ mov(r6, Operand(r6, LSR, HeapNumber::kExponentShift)); __ sub(r6, r6, Operand(HeapNumber::kExponentBias), SetCC); // If exponent is negative than result is 0. __ mov(r3, Operand(0), LeaveCC, mi); __ b(mi, &done); // If exponent is too big than result is minimal value __ cmp(r6, Operand(meaningfull_bits - 1)); __ mov(r3, Operand(min_value), LeaveCC, ge); __ b(ge, &done); __ and_(r5, r3, Operand(HeapNumber::kSignMask), SetCC); __ and_(r3, r3, Operand(HeapNumber::kMantissaMask)); __ orr(r3, r3, Operand(1u << HeapNumber::kMantissaBitsInTopWord)); __ rsb(r6, r6, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); __ mov(r3, Operand(r3, LSR, r6), LeaveCC, pl); __ b(pl, &sign); __ rsb(r6, r6, Operand(0)); __ mov(r3, Operand(r3, LSL, r6)); __ rsb(r6, r6, Operand(meaningfull_bits)); __ orr(r3, r3, Operand(r4, LSR, r6)); __ bind(&sign); __ teq(r5, Operand(0)); __ rsb(r3, r3, Operand(0), LeaveCC, ne); __ bind(&done); switch (array_type) { case kExternalByteArray: case kExternalUnsignedByteArray: __ strb(r3, MemOperand(r2, r1, LSL, 0)); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ strh(r3, MemOperand(r2, r1, LSL, 1)); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ str(r3, MemOperand(r2, r1, LSL, 2)); break; default: UNREACHABLE(); break; } } } // Slow case: call runtime. __ bind(&slow); GenerateRuntimeSetProperty(masm); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- // Get the receiver from the stack and probe the stub cache. Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, NOT_IN_LOOP, MONOMORPHIC); StubCache::GenerateProbe(masm, flags, r1, r2, r3, no_reg); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateMiss(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- __ Push(r1, r2, r0); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss)); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateArrayLength(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : value // -- r1 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- // // This accepts as a receiver anything JSObject::SetElementsLength accepts // (currently anything except for external and pixel arrays which means // anything with elements of FixedArray type.), but currently is restricted // to JSArray. // Value must be a number, but only smis are accepted as the most common case. Label miss; Register receiver = r1; Register value = r0; Register scratch = r3; // Check that the receiver isn't a smi. __ BranchOnSmi(receiver, &miss); // Check that the object is a JS array. __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE); __ b(ne, &miss); // Check that elements are FixedArray. __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset)); __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE); __ b(ne, &miss); // Check that value is a smi. __ BranchOnNotSmi(value, &miss); // Prepare tail call to StoreIC_ArrayLength. __ Push(receiver, value); ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength)); __ TailCallExternalReference(ref, 2, 1); __ bind(&miss); GenerateMiss(masm); } #undef __ } } // namespace v8::internal