// // detail/impl/socket_ops.ipp // ~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2020 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef ASIO_DETAIL_SOCKET_OPS_IPP #define ASIO_DETAIL_SOCKET_OPS_IPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include "asio/detail/config.hpp" #include #include #include #include #include #include #include "asio/detail/assert.hpp" #include "asio/detail/socket_ops.hpp" #include "asio/error.hpp" #if defined(ASIO_WINDOWS_RUNTIME) # include # include # include #endif // defined(ASIO_WINDOWS_RUNTIME) #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) \ || defined(__MACH__) && defined(__APPLE__) # if defined(ASIO_HAS_PTHREADS) # include # endif // defined(ASIO_HAS_PTHREADS) #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) // || defined(__MACH__) && defined(__APPLE__) #include "asio/detail/push_options.hpp" namespace asio { namespace detail { namespace socket_ops { #if !defined(ASIO_WINDOWS_RUNTIME) #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) struct msghdr { int msg_namelen; }; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) #if defined(__hpux) // HP-UX doesn't declare these functions extern "C", so they are declared again // here to avoid linker errors about undefined symbols. extern "C" char* if_indextoname(unsigned int, char*); extern "C" unsigned int if_nametoindex(const char*); #endif // defined(__hpux) #endif // !defined(ASIO_WINDOWS_RUNTIME) inline void clear_last_error() { #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) WSASetLastError(0); #else errno = 0; #endif } #if !defined(ASIO_WINDOWS_RUNTIME) template inline ReturnType error_wrapper(ReturnType return_value, asio::error_code& ec) { #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) ec = asio::error_code(WSAGetLastError(), asio::error::get_system_category()); #else ec = asio::error_code(errno, asio::error::get_system_category()); #endif return return_value; } template inline socket_type call_accept(SockLenType msghdr::*, socket_type s, socket_addr_type* addr, std::size_t* addrlen) { SockLenType tmp_addrlen = addrlen ? (SockLenType)*addrlen : 0; socket_type result = ::accept(s, addr, addrlen ? &tmp_addrlen : 0); if (addrlen) *addrlen = (std::size_t)tmp_addrlen; return result; } socket_type accept(socket_type s, socket_addr_type* addr, std::size_t* addrlen, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return invalid_socket; } clear_last_error(); socket_type new_s = error_wrapper(call_accept( &msghdr::msg_namelen, s, addr, addrlen), ec); if (new_s == invalid_socket) return new_s; #if defined(__MACH__) && defined(__APPLE__) || defined(__FreeBSD__) int optval = 1; int result = error_wrapper(::setsockopt(new_s, SOL_SOCKET, SO_NOSIGPIPE, &optval, sizeof(optval)), ec); if (result != 0) { ::close(new_s); return invalid_socket; } #endif ec = asio::error_code(); return new_s; } socket_type sync_accept(socket_type s, state_type state, socket_addr_type* addr, std::size_t* addrlen, asio::error_code& ec) { // Accept a socket. for (;;) { // Try to complete the operation without blocking. socket_type new_socket = socket_ops::accept(s, addr, addrlen, ec); // Check if operation succeeded. if (new_socket != invalid_socket) return new_socket; // Operation failed. if (ec == asio::error::would_block || ec == asio::error::try_again) { if (state & user_set_non_blocking) return invalid_socket; // Fall through to retry operation. } else if (ec == asio::error::connection_aborted) { if (state & enable_connection_aborted) return invalid_socket; // Fall through to retry operation. } #if defined(EPROTO) else if (ec.value() == EPROTO) { if (state & enable_connection_aborted) return invalid_socket; // Fall through to retry operation. } #endif // defined(EPROTO) else return invalid_socket; // Wait for socket to become ready. if (socket_ops::poll_read(s, 0, -1, ec) < 0) return invalid_socket; } } #if defined(ASIO_HAS_IOCP) void complete_iocp_accept(socket_type s, void* output_buffer, DWORD address_length, socket_addr_type* addr, std::size_t* addrlen, socket_type new_socket, asio::error_code& ec) { // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_NETNAME_DELETED) ec = asio::error::connection_aborted; if (!ec) { // Get the address of the peer. if (addr && addrlen) { LPSOCKADDR local_addr = 0; int local_addr_length = 0; LPSOCKADDR remote_addr = 0; int remote_addr_length = 0; GetAcceptExSockaddrs(output_buffer, 0, address_length, address_length, &local_addr, &local_addr_length, &remote_addr, &remote_addr_length); if (static_cast(remote_addr_length) > *addrlen) { ec = asio::error::invalid_argument; } else { using namespace std; // For memcpy. memcpy(addr, remote_addr, remote_addr_length); *addrlen = static_cast(remote_addr_length); } } // Need to set the SO_UPDATE_ACCEPT_CONTEXT option so that getsockname // and getpeername will work on the accepted socket. SOCKET update_ctx_param = s; socket_ops::state_type state = 0; socket_ops::setsockopt(new_socket, state, SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT, &update_ctx_param, sizeof(SOCKET), ec); } } #else // defined(ASIO_HAS_IOCP) bool non_blocking_accept(socket_type s, state_type state, socket_addr_type* addr, std::size_t* addrlen, asio::error_code& ec, socket_type& new_socket) { for (;;) { // Accept the waiting connection. new_socket = socket_ops::accept(s, addr, addrlen, ec); // Check if operation succeeded. if (new_socket != invalid_socket) return true; // Retry operation if interrupted by signal. if (ec == asio::error::interrupted) continue; // Operation failed. if (ec == asio::error::would_block || ec == asio::error::try_again) { // Fall through to retry operation. } else if (ec == asio::error::connection_aborted) { if (state & enable_connection_aborted) return true; // Fall through to retry operation. } #if defined(EPROTO) else if (ec.value() == EPROTO) { if (state & enable_connection_aborted) return true; // Fall through to retry operation. } #endif // defined(EPROTO) else return true; return false; } } #endif // defined(ASIO_HAS_IOCP) template inline int call_bind(SockLenType msghdr::*, socket_type s, const socket_addr_type* addr, std::size_t addrlen) { return ::bind(s, addr, (SockLenType)addrlen); } int bind(socket_type s, const socket_addr_type* addr, std::size_t addrlen, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } clear_last_error(); int result = error_wrapper(call_bind( &msghdr::msg_namelen, s, addr, addrlen), ec); if (result == 0) ec = asio::error_code(); return result; } int close(socket_type s, state_type& state, bool destruction, asio::error_code& ec) { int result = 0; if (s != invalid_socket) { // We don't want the destructor to block, so set the socket to linger in // the background. If the user doesn't like this behaviour then they need // to explicitly close the socket. if (destruction && (state & user_set_linger)) { ::linger opt; opt.l_onoff = 0; opt.l_linger = 0; asio::error_code ignored_ec; socket_ops::setsockopt(s, state, SOL_SOCKET, SO_LINGER, &opt, sizeof(opt), ignored_ec); } clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) result = error_wrapper(::closesocket(s), ec); #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) result = error_wrapper(::close(s), ec); #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) if (result != 0 && (ec == asio::error::would_block || ec == asio::error::try_again)) { // According to UNIX Network Programming Vol. 1, it is possible for // close() to fail with EWOULDBLOCK under certain circumstances. What // isn't clear is the state of the descriptor after this error. The one // current OS where this behaviour is seen, Windows, says that the socket // remains open. Therefore we'll put the descriptor back into blocking // mode and have another attempt at closing it. #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) ioctl_arg_type arg = 0; ::ioctlsocket(s, FIONBIO, &arg); #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) # if defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__) int flags = ::fcntl(s, F_GETFL, 0); if (flags >= 0) ::fcntl(s, F_SETFL, flags & ~O_NONBLOCK); # else // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__) ioctl_arg_type arg = 0; ::ioctl(s, FIONBIO, &arg); # endif // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__) #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) state &= ~non_blocking; clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) result = error_wrapper(::closesocket(s), ec); #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) result = error_wrapper(::close(s), ec); #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } } if (result == 0) ec = asio::error_code(); return result; } bool set_user_non_blocking(socket_type s, state_type& state, bool value, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return false; } clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) ioctl_arg_type arg = (value ? 1 : 0); int result = error_wrapper(::ioctlsocket(s, FIONBIO, &arg), ec); #elif defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__) int result = error_wrapper(::fcntl(s, F_GETFL, 0), ec); if (result >= 0) { clear_last_error(); int flag = (value ? (result | O_NONBLOCK) : (result & ~O_NONBLOCK)); result = error_wrapper(::fcntl(s, F_SETFL, flag), ec); } #else ioctl_arg_type arg = (value ? 1 : 0); int result = error_wrapper(::ioctl(s, FIONBIO, &arg), ec); #endif if (result >= 0) { ec = asio::error_code(); if (value) state |= user_set_non_blocking; else { // Clearing the user-set non-blocking mode always overrides any // internally-set non-blocking flag. Any subsequent asynchronous // operations will need to re-enable non-blocking I/O. state &= ~(user_set_non_blocking | internal_non_blocking); } return true; } return false; } bool set_internal_non_blocking(socket_type s, state_type& state, bool value, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return false; } if (!value && (state & user_set_non_blocking)) { // It does not make sense to clear the internal non-blocking flag if the // user still wants non-blocking behaviour. Return an error and let the // caller figure out whether to update the user-set non-blocking flag. ec = asio::error::invalid_argument; return false; } clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) ioctl_arg_type arg = (value ? 1 : 0); int result = error_wrapper(::ioctlsocket(s, FIONBIO, &arg), ec); #elif defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__) int result = error_wrapper(::fcntl(s, F_GETFL, 0), ec); if (result >= 0) { clear_last_error(); int flag = (value ? (result | O_NONBLOCK) : (result & ~O_NONBLOCK)); result = error_wrapper(::fcntl(s, F_SETFL, flag), ec); } #else ioctl_arg_type arg = (value ? 1 : 0); int result = error_wrapper(::ioctl(s, FIONBIO, &arg), ec); #endif if (result >= 0) { ec = asio::error_code(); if (value) state |= internal_non_blocking; else state &= ~internal_non_blocking; return true; } return false; } int shutdown(socket_type s, int what, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } clear_last_error(); int result = error_wrapper(::shutdown(s, what), ec); if (result == 0) ec = asio::error_code(); return result; } template inline int call_connect(SockLenType msghdr::*, socket_type s, const socket_addr_type* addr, std::size_t addrlen) { return ::connect(s, addr, (SockLenType)addrlen); } int connect(socket_type s, const socket_addr_type* addr, std::size_t addrlen, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } clear_last_error(); int result = error_wrapper(call_connect( &msghdr::msg_namelen, s, addr, addrlen), ec); if (result == 0) ec = asio::error_code(); #if defined(__linux__) else if (ec == asio::error::try_again) ec = asio::error::no_buffer_space; #endif // defined(__linux__) return result; } void sync_connect(socket_type s, const socket_addr_type* addr, std::size_t addrlen, asio::error_code& ec) { // Perform the connect operation. socket_ops::connect(s, addr, addrlen, ec); if (ec != asio::error::in_progress && ec != asio::error::would_block) { // The connect operation finished immediately. return; } // Wait for socket to become ready. if (socket_ops::poll_connect(s, -1, ec) < 0) return; // Get the error code from the connect operation. int connect_error = 0; size_t connect_error_len = sizeof(connect_error); if (socket_ops::getsockopt(s, 0, SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len, ec) == socket_error_retval) return; // Return the result of the connect operation. ec = asio::error_code(connect_error, asio::error::get_system_category()); } #if defined(ASIO_HAS_IOCP) void complete_iocp_connect(socket_type s, asio::error_code& ec) { // Map non-portable errors to their portable counterparts. switch (ec.value()) { case ERROR_CONNECTION_REFUSED: ec = asio::error::connection_refused; break; case ERROR_NETWORK_UNREACHABLE: ec = asio::error::network_unreachable; break; case ERROR_HOST_UNREACHABLE: ec = asio::error::host_unreachable; break; case ERROR_SEM_TIMEOUT: ec = asio::error::timed_out; break; default: break; } if (!ec) { // Need to set the SO_UPDATE_CONNECT_CONTEXT option so that getsockname // and getpeername will work on the connected socket. socket_ops::state_type state = 0; const int so_update_connect_context = 0x7010; socket_ops::setsockopt(s, state, SOL_SOCKET, so_update_connect_context, 0, 0, ec); } } #endif // defined(ASIO_HAS_IOCP) bool non_blocking_connect(socket_type s, asio::error_code& ec) { // Check if the connect operation has finished. This is required since we may // get spurious readiness notifications from the reactor. #if defined(ASIO_WINDOWS) \ || defined(__CYGWIN__) \ || defined(__SYMBIAN32__) fd_set write_fds; FD_ZERO(&write_fds); FD_SET(s, &write_fds); fd_set except_fds; FD_ZERO(&except_fds); FD_SET(s, &except_fds); timeval zero_timeout; zero_timeout.tv_sec = 0; zero_timeout.tv_usec = 0; int ready = ::select(s + 1, 0, &write_fds, &except_fds, &zero_timeout); #else // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) pollfd fds; fds.fd = s; fds.events = POLLOUT; fds.revents = 0; int ready = ::poll(&fds, 1, 0); #endif // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) if (ready == 0) { // The asynchronous connect operation is still in progress. return false; } // Get the error code from the connect operation. int connect_error = 0; size_t connect_error_len = sizeof(connect_error); if (socket_ops::getsockopt(s, 0, SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len, ec) == 0) { if (connect_error) { ec = asio::error_code(connect_error, asio::error::get_system_category()); } else ec = asio::error_code(); } return true; } int socketpair(int af, int type, int protocol, socket_type sv[2], asio::error_code& ec) { #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) (void)(af); (void)(type); (void)(protocol); (void)(sv); ec = asio::error::operation_not_supported; return socket_error_retval; #else clear_last_error(); int result = error_wrapper(::socketpair(af, type, protocol, sv), ec); if (result == 0) ec = asio::error_code(); return result; #endif } bool sockatmark(socket_type s, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return false; } #if defined(SIOCATMARK) ioctl_arg_type value = 0; # if defined(ASIO_WINDOWS) || defined(__CYGWIN__) int result = error_wrapper(::ioctlsocket(s, SIOCATMARK, &value), ec); # else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) int result = error_wrapper(::ioctl(s, SIOCATMARK, &value), ec); # endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) if (result == 0) ec = asio::error_code(); # if defined(ENOTTY) if (ec.value() == ENOTTY) ec = asio::error::not_socket; # endif // defined(ENOTTY) #else // defined(SIOCATMARK) int value = error_wrapper(::sockatmark(s), ec); if (value != -1) ec = asio::error_code(); #endif // defined(SIOCATMARK) return ec ? false : value != 0; } size_t available(socket_type s, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return 0; } ioctl_arg_type value = 0; #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) int result = error_wrapper(::ioctlsocket(s, FIONREAD, &value), ec); #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) int result = error_wrapper(::ioctl(s, FIONREAD, &value), ec); #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) if (result == 0) ec = asio::error_code(); #if defined(ENOTTY) if (ec.value() == ENOTTY) ec = asio::error::not_socket; #endif // defined(ENOTTY) return ec ? static_cast(0) : static_cast(value); } int listen(socket_type s, int backlog, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } clear_last_error(); int result = error_wrapper(::listen(s, backlog), ec); if (result == 0) ec = asio::error_code(); return result; } inline void init_buf_iov_base(void*& base, void* addr) { base = addr; } template inline void init_buf_iov_base(T& base, void* addr) { base = static_cast(addr); } #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) typedef WSABUF buf; #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) typedef iovec buf; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) void init_buf(buf& b, void* data, size_t size) { #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) b.buf = static_cast(data); b.len = static_cast(size); #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) init_buf_iov_base(b.iov_base, data); b.iov_len = size; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } void init_buf(buf& b, const void* data, size_t size) { #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) b.buf = static_cast(const_cast(data)); b.len = static_cast(size); #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) init_buf_iov_base(b.iov_base, const_cast(data)); b.iov_len = size; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } inline void init_msghdr_msg_name(void*& name, socket_addr_type* addr) { name = addr; } inline void init_msghdr_msg_name(void*& name, const socket_addr_type* addr) { name = const_cast(addr); } template inline void init_msghdr_msg_name(T& name, socket_addr_type* addr) { name = reinterpret_cast(addr); } template inline void init_msghdr_msg_name(T& name, const socket_addr_type* addr) { name = reinterpret_cast(const_cast(addr)); } signed_size_type recv(socket_type s, buf* bufs, size_t count, int flags, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) // Receive some data. DWORD recv_buf_count = static_cast(count); DWORD bytes_transferred = 0; DWORD recv_flags = flags; int result = error_wrapper(::WSARecv(s, bufs, recv_buf_count, &bytes_transferred, &recv_flags, 0, 0), ec); if (ec.value() == ERROR_NETNAME_DELETED) ec = asio::error::connection_reset; else if (ec.value() == ERROR_PORT_UNREACHABLE) ec = asio::error::connection_refused; else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA) result = 0; if (result != 0) return socket_error_retval; ec = asio::error_code(); return bytes_transferred; #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) msghdr msg = msghdr(); msg.msg_iov = bufs; msg.msg_iovlen = static_cast(count); signed_size_type result = error_wrapper(::recvmsg(s, &msg, flags), ec); if (result >= 0) ec = asio::error_code(); return result; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } size_t sync_recv(socket_type s, state_type state, buf* bufs, size_t count, int flags, bool all_empty, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return 0; } // A request to read 0 bytes on a stream is a no-op. if (all_empty && (state & stream_oriented)) { ec = asio::error_code(); return 0; } // Read some data. for (;;) { // Try to complete the operation without blocking. signed_size_type bytes = socket_ops::recv(s, bufs, count, flags, ec); // Check if operation succeeded. if (bytes > 0) return bytes; // Check for EOF. if ((state & stream_oriented) && bytes == 0) { ec = asio::error::eof; return 0; } // Operation failed. if ((state & user_set_non_blocking) || (ec != asio::error::would_block && ec != asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_read(s, 0, -1, ec) < 0) return 0; } } #if defined(ASIO_HAS_IOCP) void complete_iocp_recv(state_type state, const weak_cancel_token_type& cancel_token, bool all_empty, asio::error_code& ec, size_t bytes_transferred) { // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_NETNAME_DELETED) { if (cancel_token.expired()) ec = asio::error::operation_aborted; else ec = asio::error::connection_reset; } else if (ec.value() == ERROR_PORT_UNREACHABLE) { ec = asio::error::connection_refused; } else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA) { ec.assign(0, ec.category()); } // Check for connection closed. else if (!ec && bytes_transferred == 0 && (state & stream_oriented) != 0 && !all_empty) { ec = asio::error::eof; } } #else // defined(ASIO_HAS_IOCP) bool non_blocking_recv(socket_type s, buf* bufs, size_t count, int flags, bool is_stream, asio::error_code& ec, size_t& bytes_transferred) { for (;;) { // Read some data. signed_size_type bytes = socket_ops::recv(s, bufs, count, flags, ec); // Check for end of stream. if (is_stream && bytes == 0) { ec = asio::error::eof; return true; } // Retry operation if interrupted by signal. if (ec == asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == asio::error::would_block || ec == asio::error::try_again) return false; // Operation is complete. if (bytes >= 0) { ec = asio::error_code(); bytes_transferred = bytes; } else bytes_transferred = 0; return true; } } #endif // defined(ASIO_HAS_IOCP) signed_size_type recvfrom(socket_type s, buf* bufs, size_t count, int flags, socket_addr_type* addr, std::size_t* addrlen, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) // Receive some data. DWORD recv_buf_count = static_cast(count); DWORD bytes_transferred = 0; DWORD recv_flags = flags; int tmp_addrlen = (int)*addrlen; int result = error_wrapper(::WSARecvFrom(s, bufs, recv_buf_count, &bytes_transferred, &recv_flags, addr, &tmp_addrlen, 0, 0), ec); *addrlen = (std::size_t)tmp_addrlen; if (ec.value() == ERROR_NETNAME_DELETED) ec = asio::error::connection_reset; else if (ec.value() == ERROR_PORT_UNREACHABLE) ec = asio::error::connection_refused; else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA) result = 0; if (result != 0) return socket_error_retval; ec = asio::error_code(); return bytes_transferred; #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) msghdr msg = msghdr(); init_msghdr_msg_name(msg.msg_name, addr); msg.msg_namelen = static_cast(*addrlen); msg.msg_iov = bufs; msg.msg_iovlen = static_cast(count); signed_size_type result = error_wrapper(::recvmsg(s, &msg, flags), ec); *addrlen = msg.msg_namelen; if (result >= 0) ec = asio::error_code(); return result; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } size_t sync_recvfrom(socket_type s, state_type state, buf* bufs, size_t count, int flags, socket_addr_type* addr, std::size_t* addrlen, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return 0; } // Read some data. for (;;) { // Try to complete the operation without blocking. signed_size_type bytes = socket_ops::recvfrom( s, bufs, count, flags, addr, addrlen, ec); // Check if operation succeeded. if (bytes >= 0) return bytes; // Operation failed. if ((state & user_set_non_blocking) || (ec != asio::error::would_block && ec != asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_read(s, 0, -1, ec) < 0) return 0; } } #if defined(ASIO_HAS_IOCP) void complete_iocp_recvfrom( const weak_cancel_token_type& cancel_token, asio::error_code& ec) { // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_NETNAME_DELETED) { if (cancel_token.expired()) ec = asio::error::operation_aborted; else ec = asio::error::connection_reset; } else if (ec.value() == ERROR_PORT_UNREACHABLE) { ec = asio::error::connection_refused; } else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA) { ec.assign(0, ec.category()); } } #else // defined(ASIO_HAS_IOCP) bool non_blocking_recvfrom(socket_type s, buf* bufs, size_t count, int flags, socket_addr_type* addr, std::size_t* addrlen, asio::error_code& ec, size_t& bytes_transferred) { for (;;) { // Read some data. signed_size_type bytes = socket_ops::recvfrom( s, bufs, count, flags, addr, addrlen, ec); // Retry operation if interrupted by signal. if (ec == asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == asio::error::would_block || ec == asio::error::try_again) return false; // Operation is complete. if (bytes >= 0) { ec = asio::error_code(); bytes_transferred = bytes; } else bytes_transferred = 0; return true; } } #endif // defined(ASIO_HAS_IOCP) signed_size_type recvmsg(socket_type s, buf* bufs, size_t count, int in_flags, int& out_flags, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) out_flags = 0; return socket_ops::recv(s, bufs, count, in_flags, ec); #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) msghdr msg = msghdr(); msg.msg_iov = bufs; msg.msg_iovlen = static_cast(count); signed_size_type result = error_wrapper(::recvmsg(s, &msg, in_flags), ec); if (result >= 0) { ec = asio::error_code(); out_flags = msg.msg_flags; } else out_flags = 0; return result; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } size_t sync_recvmsg(socket_type s, state_type state, buf* bufs, size_t count, int in_flags, int& out_flags, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return 0; } // Read some data. for (;;) { // Try to complete the operation without blocking. signed_size_type bytes = socket_ops::recvmsg( s, bufs, count, in_flags, out_flags, ec); // Check if operation succeeded. if (bytes >= 0) return bytes; // Operation failed. if ((state & user_set_non_blocking) || (ec != asio::error::would_block && ec != asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_read(s, 0, -1, ec) < 0) return 0; } } #if defined(ASIO_HAS_IOCP) void complete_iocp_recvmsg( const weak_cancel_token_type& cancel_token, asio::error_code& ec) { // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_NETNAME_DELETED) { if (cancel_token.expired()) ec = asio::error::operation_aborted; else ec = asio::error::connection_reset; } else if (ec.value() == ERROR_PORT_UNREACHABLE) { ec = asio::error::connection_refused; } else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA) { ec.assign(0, ec.category()); } } #else // defined(ASIO_HAS_IOCP) bool non_blocking_recvmsg(socket_type s, buf* bufs, size_t count, int in_flags, int& out_flags, asio::error_code& ec, size_t& bytes_transferred) { for (;;) { // Read some data. signed_size_type bytes = socket_ops::recvmsg( s, bufs, count, in_flags, out_flags, ec); // Retry operation if interrupted by signal. if (ec == asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == asio::error::would_block || ec == asio::error::try_again) return false; // Operation is complete. if (bytes >= 0) { ec = asio::error_code(); bytes_transferred = bytes; } else bytes_transferred = 0; return true; } } #endif // defined(ASIO_HAS_IOCP) signed_size_type send(socket_type s, const buf* bufs, size_t count, int flags, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) // Send the data. DWORD send_buf_count = static_cast(count); DWORD bytes_transferred = 0; DWORD send_flags = flags; int result = error_wrapper(::WSASend(s, const_cast(bufs), send_buf_count, &bytes_transferred, send_flags, 0, 0), ec); if (ec.value() == ERROR_NETNAME_DELETED) ec = asio::error::connection_reset; else if (ec.value() == ERROR_PORT_UNREACHABLE) ec = asio::error::connection_refused; if (result != 0) return socket_error_retval; ec = asio::error_code(); return bytes_transferred; #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) msghdr msg = msghdr(); msg.msg_iov = const_cast(bufs); msg.msg_iovlen = static_cast(count); #if defined(__linux__) flags |= MSG_NOSIGNAL; #endif // defined(__linux__) signed_size_type result = error_wrapper(::sendmsg(s, &msg, flags), ec); if (result >= 0) ec = asio::error_code(); return result; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } size_t sync_send(socket_type s, state_type state, const buf* bufs, size_t count, int flags, bool all_empty, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return 0; } // A request to write 0 bytes to a stream is a no-op. if (all_empty && (state & stream_oriented)) { ec = asio::error_code(); return 0; } // Read some data. for (;;) { // Try to complete the operation without blocking. signed_size_type bytes = socket_ops::send(s, bufs, count, flags, ec); // Check if operation succeeded. if (bytes >= 0) return bytes; // Operation failed. if ((state & user_set_non_blocking) || (ec != asio::error::would_block && ec != asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_write(s, 0, -1, ec) < 0) return 0; } } #if defined(ASIO_HAS_IOCP) void complete_iocp_send( const weak_cancel_token_type& cancel_token, asio::error_code& ec) { // Map non-portable errors to their portable counterparts. if (ec.value() == ERROR_NETNAME_DELETED) { if (cancel_token.expired()) ec = asio::error::operation_aborted; else ec = asio::error::connection_reset; } else if (ec.value() == ERROR_PORT_UNREACHABLE) { ec = asio::error::connection_refused; } } #else // defined(ASIO_HAS_IOCP) bool non_blocking_send(socket_type s, const buf* bufs, size_t count, int flags, asio::error_code& ec, size_t& bytes_transferred) { for (;;) { // Write some data. signed_size_type bytes = socket_ops::send(s, bufs, count, flags, ec); // Retry operation if interrupted by signal. if (ec == asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == asio::error::would_block || ec == asio::error::try_again) return false; // Operation is complete. if (bytes >= 0) { ec = asio::error_code(); bytes_transferred = bytes; } else bytes_transferred = 0; return true; } } #endif // defined(ASIO_HAS_IOCP) signed_size_type sendto(socket_type s, const buf* bufs, size_t count, int flags, const socket_addr_type* addr, std::size_t addrlen, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) // Send the data. DWORD send_buf_count = static_cast(count); DWORD bytes_transferred = 0; int result = error_wrapper(::WSASendTo(s, const_cast(bufs), send_buf_count, &bytes_transferred, flags, addr, static_cast(addrlen), 0, 0), ec); if (ec.value() == ERROR_NETNAME_DELETED) ec = asio::error::connection_reset; else if (ec.value() == ERROR_PORT_UNREACHABLE) ec = asio::error::connection_refused; if (result != 0) return socket_error_retval; ec = asio::error_code(); return bytes_transferred; #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) msghdr msg = msghdr(); init_msghdr_msg_name(msg.msg_name, addr); msg.msg_namelen = static_cast(addrlen); msg.msg_iov = const_cast(bufs); msg.msg_iovlen = static_cast(count); #if defined(__linux__) flags |= MSG_NOSIGNAL; #endif // defined(__linux__) signed_size_type result = error_wrapper(::sendmsg(s, &msg, flags), ec); if (result >= 0) ec = asio::error_code(); return result; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } size_t sync_sendto(socket_type s, state_type state, const buf* bufs, size_t count, int flags, const socket_addr_type* addr, std::size_t addrlen, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return 0; } // Write some data. for (;;) { // Try to complete the operation without blocking. signed_size_type bytes = socket_ops::sendto( s, bufs, count, flags, addr, addrlen, ec); // Check if operation succeeded. if (bytes >= 0) return bytes; // Operation failed. if ((state & user_set_non_blocking) || (ec != asio::error::would_block && ec != asio::error::try_again)) return 0; // Wait for socket to become ready. if (socket_ops::poll_write(s, 0, -1, ec) < 0) return 0; } } #if !defined(ASIO_HAS_IOCP) bool non_blocking_sendto(socket_type s, const buf* bufs, size_t count, int flags, const socket_addr_type* addr, std::size_t addrlen, asio::error_code& ec, size_t& bytes_transferred) { for (;;) { // Write some data. signed_size_type bytes = socket_ops::sendto( s, bufs, count, flags, addr, addrlen, ec); // Retry operation if interrupted by signal. if (ec == asio::error::interrupted) continue; // Check if we need to run the operation again. if (ec == asio::error::would_block || ec == asio::error::try_again) return false; // Operation is complete. if (bytes >= 0) { ec = asio::error_code(); bytes_transferred = bytes; } else bytes_transferred = 0; return true; } } #endif // !defined(ASIO_HAS_IOCP) socket_type socket(int af, int type, int protocol, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) socket_type s = error_wrapper(::WSASocketW(af, type, protocol, 0, 0, WSA_FLAG_OVERLAPPED), ec); if (s == invalid_socket) return s; if (af == ASIO_OS_DEF(AF_INET6)) { // Try to enable the POSIX default behaviour of having IPV6_V6ONLY set to // false. This will only succeed on Windows Vista and later versions of // Windows, where a dual-stack IPv4/v6 implementation is available. DWORD optval = 0; ::setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast(&optval), sizeof(optval)); } ec = asio::error_code(); return s; #elif defined(__MACH__) && defined(__APPLE__) || defined(__FreeBSD__) socket_type s = error_wrapper(::socket(af, type, protocol), ec); if (s == invalid_socket) return s; int optval = 1; int result = error_wrapper(::setsockopt(s, SOL_SOCKET, SO_NOSIGPIPE, &optval, sizeof(optval)), ec); if (result != 0) { ::close(s); return invalid_socket; } return s; #else int s = error_wrapper(::socket(af, type, protocol), ec); if (s >= 0) ec = asio::error_code(); return s; #endif } template inline int call_setsockopt(SockLenType msghdr::*, socket_type s, int level, int optname, const void* optval, std::size_t optlen) { return ::setsockopt(s, level, optname, (const char*)optval, (SockLenType)optlen); } int setsockopt(socket_type s, state_type& state, int level, int optname, const void* optval, std::size_t optlen, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } if (level == custom_socket_option_level && optname == always_fail_option) { ec = asio::error::invalid_argument; return socket_error_retval; } if (level == custom_socket_option_level && optname == enable_connection_aborted_option) { if (optlen != sizeof(int)) { ec = asio::error::invalid_argument; return socket_error_retval; } if (*static_cast(optval)) state |= enable_connection_aborted; else state &= ~enable_connection_aborted; ec = asio::error_code(); return 0; } if (level == SOL_SOCKET && optname == SO_LINGER) state |= user_set_linger; #if defined(__BORLANDC__) // Mysteriously, using the getsockopt and setsockopt functions directly with // Borland C++ results in incorrect values being set and read. The bug can be // worked around by using function addresses resolved with GetProcAddress. if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32")) { typedef int (WSAAPI *sso_t)(SOCKET, int, int, const char*, int); if (sso_t sso = (sso_t)::GetProcAddress(winsock_module, "setsockopt")) { clear_last_error(); return error_wrapper(sso(s, level, optname, reinterpret_cast(optval), static_cast(optlen)), ec); } } ec = asio::error::fault; return socket_error_retval; #else // defined(__BORLANDC__) clear_last_error(); int result = error_wrapper(call_setsockopt(&msghdr::msg_namelen, s, level, optname, optval, optlen), ec); if (result == 0) { ec = asio::error_code(); #if defined(__MACH__) && defined(__APPLE__) \ || defined(__NetBSD__) || defined(__FreeBSD__) \ || defined(__OpenBSD__) || defined(__QNX__) // To implement portable behaviour for SO_REUSEADDR with UDP sockets we // need to also set SO_REUSEPORT on BSD-based platforms. if ((state & datagram_oriented) && level == SOL_SOCKET && optname == SO_REUSEADDR) { call_setsockopt(&msghdr::msg_namelen, s, SOL_SOCKET, SO_REUSEPORT, optval, optlen); } #endif } return result; #endif // defined(__BORLANDC__) } template inline int call_getsockopt(SockLenType msghdr::*, socket_type s, int level, int optname, void* optval, std::size_t* optlen) { SockLenType tmp_optlen = (SockLenType)*optlen; int result = ::getsockopt(s, level, optname, (char*)optval, &tmp_optlen); *optlen = (std::size_t)tmp_optlen; return result; } int getsockopt(socket_type s, state_type state, int level, int optname, void* optval, size_t* optlen, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } if (level == custom_socket_option_level && optname == always_fail_option) { ec = asio::error::invalid_argument; return socket_error_retval; } if (level == custom_socket_option_level && optname == enable_connection_aborted_option) { if (*optlen != sizeof(int)) { ec = asio::error::invalid_argument; return socket_error_retval; } *static_cast(optval) = (state & enable_connection_aborted) ? 1 : 0; ec = asio::error_code(); return 0; } #if defined(__BORLANDC__) // Mysteriously, using the getsockopt and setsockopt functions directly with // Borland C++ results in incorrect values being set and read. The bug can be // worked around by using function addresses resolved with GetProcAddress. if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32")) { typedef int (WSAAPI *gso_t)(SOCKET, int, int, char*, int*); if (gso_t gso = (gso_t)::GetProcAddress(winsock_module, "getsockopt")) { clear_last_error(); int tmp_optlen = static_cast(*optlen); int result = error_wrapper(gso(s, level, optname, reinterpret_cast(optval), &tmp_optlen), ec); *optlen = static_cast(tmp_optlen); if (result != 0 && level == IPPROTO_IPV6 && optname == IPV6_V6ONLY && ec.value() == WSAENOPROTOOPT && *optlen == sizeof(DWORD)) { // Dual-stack IPv4/v6 sockets, and the IPV6_V6ONLY socket option, are // only supported on Windows Vista and later. To simplify program logic // we will fake success of getting this option and specify that the // value is non-zero (i.e. true). This corresponds to the behavior of // IPv6 sockets on Windows platforms pre-Vista. *static_cast(optval) = 1; ec = asio::error_code(); } return result; } } ec = asio::error::fault; return socket_error_retval; #elif defined(ASIO_WINDOWS) || defined(__CYGWIN__) clear_last_error(); int result = error_wrapper(call_getsockopt(&msghdr::msg_namelen, s, level, optname, optval, optlen), ec); if (result != 0 && level == IPPROTO_IPV6 && optname == IPV6_V6ONLY && ec.value() == WSAENOPROTOOPT && *optlen == sizeof(DWORD)) { // Dual-stack IPv4/v6 sockets, and the IPV6_V6ONLY socket option, are only // supported on Windows Vista and later. To simplify program logic we will // fake success of getting this option and specify that the value is // non-zero (i.e. true). This corresponds to the behavior of IPv6 sockets // on Windows platforms pre-Vista. *static_cast(optval) = 1; ec = asio::error_code(); } if (result == 0) ec = asio::error_code(); return result; #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) clear_last_error(); int result = error_wrapper(call_getsockopt(&msghdr::msg_namelen, s, level, optname, optval, optlen), ec); #if defined(__linux__) if (result == 0 && level == SOL_SOCKET && *optlen == sizeof(int) && (optname == SO_SNDBUF || optname == SO_RCVBUF)) { // On Linux, setting SO_SNDBUF or SO_RCVBUF to N actually causes the kernel // to set the buffer size to N*2. Linux puts additional stuff into the // buffers so that only about half is actually available to the application. // The retrieved value is divided by 2 here to make it appear as though the // correct value has been set. *static_cast(optval) /= 2; } #endif // defined(__linux__) if (result == 0) ec = asio::error_code(); return result; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } template inline int call_getpeername(SockLenType msghdr::*, socket_type s, socket_addr_type* addr, std::size_t* addrlen) { SockLenType tmp_addrlen = (SockLenType)*addrlen; int result = ::getpeername(s, addr, &tmp_addrlen); *addrlen = (std::size_t)tmp_addrlen; return result; } int getpeername(socket_type s, socket_addr_type* addr, std::size_t* addrlen, bool cached, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } #if defined(ASIO_WINDOWS) && !defined(ASIO_WINDOWS_APP) \ || defined(__CYGWIN__) if (cached) { // Check if socket is still connected. DWORD connect_time = 0; size_t connect_time_len = sizeof(connect_time); if (socket_ops::getsockopt(s, 0, SOL_SOCKET, SO_CONNECT_TIME, &connect_time, &connect_time_len, ec) == socket_error_retval) { return socket_error_retval; } if (connect_time == 0xFFFFFFFF) { ec = asio::error::not_connected; return socket_error_retval; } // The cached value is still valid. ec = asio::error_code(); return 0; } #else // defined(ASIO_WINDOWS) && !defined(ASIO_WINDOWS_APP) // || defined(__CYGWIN__) (void)cached; #endif // defined(ASIO_WINDOWS) && !defined(ASIO_WINDOWS_APP) // || defined(__CYGWIN__) clear_last_error(); int result = error_wrapper(call_getpeername( &msghdr::msg_namelen, s, addr, addrlen), ec); if (result == 0) ec = asio::error_code(); return result; } template inline int call_getsockname(SockLenType msghdr::*, socket_type s, socket_addr_type* addr, std::size_t* addrlen) { SockLenType tmp_addrlen = (SockLenType)*addrlen; int result = ::getsockname(s, addr, &tmp_addrlen); *addrlen = (std::size_t)tmp_addrlen; return result; } int getsockname(socket_type s, socket_addr_type* addr, std::size_t* addrlen, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } clear_last_error(); int result = error_wrapper(call_getsockname( &msghdr::msg_namelen, s, addr, addrlen), ec); if (result == 0) ec = asio::error_code(); return result; } int ioctl(socket_type s, state_type& state, int cmd, ioctl_arg_type* arg, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) int result = error_wrapper(::ioctlsocket(s, cmd, arg), ec); #elif defined(__MACH__) && defined(__APPLE__) \ || defined(__NetBSD__) || defined(__FreeBSD__) || defined(__OpenBSD__) int result = error_wrapper(::ioctl(s, static_cast(cmd), arg), ec); #else int result = error_wrapper(::ioctl(s, cmd, arg), ec); #endif if (result >= 0) { ec = asio::error_code(); // When updating the non-blocking mode we always perform the ioctl syscall, // even if the flags would otherwise indicate that the socket is already in // the correct state. This ensures that the underlying socket is put into // the state that has been requested by the user. If the ioctl syscall was // successful then we need to update the flags to match. if (cmd == static_cast(FIONBIO)) { if (*arg) { state |= user_set_non_blocking; } else { // Clearing the non-blocking mode always overrides any internally-set // non-blocking flag. Any subsequent asynchronous operations will need // to re-enable non-blocking I/O. state &= ~(user_set_non_blocking | internal_non_blocking); } } } return result; } int select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, timeval* timeout, asio::error_code& ec) { clear_last_error(); #if defined(__EMSCRIPTEN__) exceptfds = 0; #endif // defined(__EMSCRIPTEN__) #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) if (!readfds && !writefds && !exceptfds && timeout) { DWORD milliseconds = timeout->tv_sec * 1000 + timeout->tv_usec / 1000; if (milliseconds == 0) milliseconds = 1; // Force context switch. ::Sleep(milliseconds); ec = asio::error_code(); return 0; } // The select() call allows timeout values measured in microseconds, but the // system clock (as wrapped by boost::posix_time::microsec_clock) typically // has a resolution of 10 milliseconds. This can lead to a spinning select // reactor, meaning increased CPU usage, when waiting for the earliest // scheduled timeout if it's less than 10 milliseconds away. To avoid a tight // spin we'll use a minimum timeout of 1 millisecond. if (timeout && timeout->tv_sec == 0 && timeout->tv_usec > 0 && timeout->tv_usec < 1000) timeout->tv_usec = 1000; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) #if defined(__hpux) && defined(__SELECT) timespec ts; ts.tv_sec = timeout ? timeout->tv_sec : 0; ts.tv_nsec = timeout ? timeout->tv_usec * 1000 : 0; return error_wrapper(::pselect(nfds, readfds, writefds, exceptfds, timeout ? &ts : 0, 0), ec); #else int result = error_wrapper(::select(nfds, readfds, writefds, exceptfds, timeout), ec); if (result >= 0) ec = asio::error_code(); return result; #endif } int poll_read(socket_type s, state_type state, int msec, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } #if defined(ASIO_WINDOWS) \ || defined(__CYGWIN__) \ || defined(__SYMBIAN32__) fd_set fds; FD_ZERO(&fds); FD_SET(s, &fds); timeval timeout_obj; timeval* timeout; if (state & user_set_non_blocking) { timeout_obj.tv_sec = 0; timeout_obj.tv_usec = 0; timeout = &timeout_obj; } else if (msec >= 0) { timeout_obj.tv_sec = msec / 1000; timeout_obj.tv_usec = (msec % 1000) * 1000; timeout = &timeout_obj; } else timeout = 0; clear_last_error(); int result = error_wrapper(::select(s + 1, &fds, 0, 0, timeout), ec); #else // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) pollfd fds; fds.fd = s; fds.events = POLLIN; fds.revents = 0; int timeout = (state & user_set_non_blocking) ? 0 : msec; clear_last_error(); int result = error_wrapper(::poll(&fds, 1, timeout), ec); #endif // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) if (result == 0) ec = (state & user_set_non_blocking) ? asio::error::would_block : asio::error_code(); else if (result > 0) ec = asio::error_code(); return result; } int poll_write(socket_type s, state_type state, int msec, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } #if defined(ASIO_WINDOWS) \ || defined(__CYGWIN__) \ || defined(__SYMBIAN32__) fd_set fds; FD_ZERO(&fds); FD_SET(s, &fds); timeval timeout_obj; timeval* timeout; if (state & user_set_non_blocking) { timeout_obj.tv_sec = 0; timeout_obj.tv_usec = 0; timeout = &timeout_obj; } else if (msec >= 0) { timeout_obj.tv_sec = msec / 1000; timeout_obj.tv_usec = (msec % 1000) * 1000; timeout = &timeout_obj; } else timeout = 0; clear_last_error(); int result = error_wrapper(::select(s + 1, 0, &fds, 0, timeout), ec); #else // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) pollfd fds; fds.fd = s; fds.events = POLLOUT; fds.revents = 0; int timeout = (state & user_set_non_blocking) ? 0 : msec; clear_last_error(); int result = error_wrapper(::poll(&fds, 1, timeout), ec); #endif // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) if (result == 0) ec = (state & user_set_non_blocking) ? asio::error::would_block : asio::error_code(); else if (result > 0) ec = asio::error_code(); return result; } int poll_error(socket_type s, state_type state, int msec, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } #if defined(ASIO_WINDOWS) \ || defined(__CYGWIN__) \ || defined(__SYMBIAN32__) fd_set fds; FD_ZERO(&fds); FD_SET(s, &fds); timeval timeout_obj; timeval* timeout; if (state & user_set_non_blocking) { timeout_obj.tv_sec = 0; timeout_obj.tv_usec = 0; timeout = &timeout_obj; } else if (msec >= 0) { timeout_obj.tv_sec = msec / 1000; timeout_obj.tv_usec = (msec % 1000) * 1000; timeout = &timeout_obj; } else timeout = 0; clear_last_error(); int result = error_wrapper(::select(s + 1, 0, 0, &fds, timeout), ec); #else // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) pollfd fds; fds.fd = s; fds.events = POLLPRI | POLLERR | POLLHUP; fds.revents = 0; int timeout = (state & user_set_non_blocking) ? 0 : msec; clear_last_error(); int result = error_wrapper(::poll(&fds, 1, timeout), ec); #endif // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) if (result == 0) ec = (state & user_set_non_blocking) ? asio::error::would_block : asio::error_code(); else if (result > 0) ec = asio::error_code(); return result; } int poll_connect(socket_type s, int msec, asio::error_code& ec) { if (s == invalid_socket) { ec = asio::error::bad_descriptor; return socket_error_retval; } #if defined(ASIO_WINDOWS) \ || defined(__CYGWIN__) \ || defined(__SYMBIAN32__) fd_set write_fds; FD_ZERO(&write_fds); FD_SET(s, &write_fds); fd_set except_fds; FD_ZERO(&except_fds); FD_SET(s, &except_fds); timeval timeout_obj; timeval* timeout; if (msec >= 0) { timeout_obj.tv_sec = msec / 1000; timeout_obj.tv_usec = (msec % 1000) * 1000; timeout = &timeout_obj; } else timeout = 0; clear_last_error(); int result = error_wrapper(::select( s + 1, 0, &write_fds, &except_fds, timeout), ec); if (result >= 0) ec = asio::error_code(); return result; #else // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) pollfd fds; fds.fd = s; fds.events = POLLOUT; fds.revents = 0; clear_last_error(); int result = error_wrapper(::poll(&fds, 1, msec), ec); if (result >= 0) ec = asio::error_code(); return result; #endif // defined(ASIO_WINDOWS) // || defined(__CYGWIN__) // || defined(__SYMBIAN32__) } #endif // !defined(ASIO_WINDOWS_RUNTIME) const char* inet_ntop(int af, const void* src, char* dest, size_t length, unsigned long scope_id, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS_RUNTIME) using namespace std; // For sprintf. const unsigned char* bytes = static_cast(src); if (af == ASIO_OS_DEF(AF_INET)) { sprintf_s(dest, length, "%u.%u.%u.%u", bytes[0], bytes[1], bytes[2], bytes[3]); return dest; } else if (af == ASIO_OS_DEF(AF_INET6)) { size_t n = 0, b = 0, z = 0; while (n < length && b < 16) { if (bytes[b] == 0 && bytes[b + 1] == 0 && z == 0) { do b += 2; while (b < 16 && bytes[b] == 0 && bytes[b + 1] == 0); n += sprintf_s(dest + n, length - n, ":%s", b < 16 ? "" : ":"), ++z; } else { n += sprintf_s(dest + n, length - n, "%s%x", b ? ":" : "", (static_cast(bytes[b]) << 8) | bytes[b + 1]); b += 2; } } if (scope_id) n += sprintf_s(dest + n, length - n, "%%%lu", scope_id); return dest; } else { ec = asio::error::address_family_not_supported; return 0; } #elif defined(ASIO_WINDOWS) || defined(__CYGWIN__) using namespace std; // For memcpy. if (af != ASIO_OS_DEF(AF_INET) && af != ASIO_OS_DEF(AF_INET6)) { ec = asio::error::address_family_not_supported; return 0; } union { socket_addr_type base; sockaddr_storage_type storage; sockaddr_in4_type v4; sockaddr_in6_type v6; } address; DWORD address_length; if (af == ASIO_OS_DEF(AF_INET)) { address_length = sizeof(sockaddr_in4_type); address.v4.sin_family = ASIO_OS_DEF(AF_INET); address.v4.sin_port = 0; memcpy(&address.v4.sin_addr, src, sizeof(in4_addr_type)); } else // AF_INET6 { address_length = sizeof(sockaddr_in6_type); address.v6.sin6_family = ASIO_OS_DEF(AF_INET6); address.v6.sin6_port = 0; address.v6.sin6_flowinfo = 0; address.v6.sin6_scope_id = scope_id; memcpy(&address.v6.sin6_addr, src, sizeof(in6_addr_type)); } DWORD string_length = static_cast(length); #if defined(BOOST_NO_ANSI_APIS) || (defined(_MSC_VER) && (_MSC_VER >= 1800)) LPWSTR string_buffer = (LPWSTR)_alloca(length * sizeof(WCHAR)); int result = error_wrapper(::WSAAddressToStringW(&address.base, address_length, 0, string_buffer, &string_length), ec); ::WideCharToMultiByte(CP_ACP, 0, string_buffer, -1, dest, static_cast(length), 0, 0); #else int result = error_wrapper(::WSAAddressToStringA( &address.base, address_length, 0, dest, &string_length), ec); #endif // Windows may set error code on success. if (result != socket_error_retval) ec = asio::error_code(); // Windows may not set an error code on failure. else if (result == socket_error_retval && !ec) ec = asio::error::invalid_argument; return result == socket_error_retval ? 0 : dest; #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) const char* result = error_wrapper(::inet_ntop( af, src, dest, static_cast(length)), ec); if (result == 0 && !ec) ec = asio::error::invalid_argument; if (result != 0 && af == ASIO_OS_DEF(AF_INET6) && scope_id != 0) { using namespace std; // For strcat and sprintf. char if_name[(IF_NAMESIZE > 21 ? IF_NAMESIZE : 21) + 1] = "%"; const in6_addr_type* ipv6_address = static_cast(src); bool is_link_local = ((ipv6_address->s6_addr[0] == 0xfe) && ((ipv6_address->s6_addr[1] & 0xc0) == 0x80)); bool is_multicast_link_local = ((ipv6_address->s6_addr[0] == 0xff) && ((ipv6_address->s6_addr[1] & 0x0f) == 0x02)); if ((!is_link_local && !is_multicast_link_local) || if_indextoname(static_cast(scope_id), if_name + 1) == 0) sprintf(if_name + 1, "%lu", scope_id); strcat(dest, if_name); } return result; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } int inet_pton(int af, const char* src, void* dest, unsigned long* scope_id, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS_RUNTIME) using namespace std; // For sscanf. unsigned char* bytes = static_cast(dest); if (af == ASIO_OS_DEF(AF_INET)) { unsigned int b0, b1, b2, b3; if (sscanf_s(src, "%u.%u.%u.%u", &b0, &b1, &b2, &b3) != 4) { ec = asio::error::invalid_argument; return -1; } if (b0 > 255 || b1 > 255 || b2 > 255 || b3 > 255) { ec = asio::error::invalid_argument; return -1; } bytes[0] = static_cast(b0); bytes[1] = static_cast(b1); bytes[2] = static_cast(b2); bytes[3] = static_cast(b3); ec = asio::error_code(); return 1; } else if (af == ASIO_OS_DEF(AF_INET6)) { unsigned char* bytes = static_cast(dest); std::memset(bytes, 0, 16); unsigned char back_bytes[16] = { 0 }; int num_front_bytes = 0, num_back_bytes = 0; const char* p = src; enum { fword, fcolon, bword, scope, done } state = fword; unsigned long current_word = 0; while (state != done) { if (current_word > 0xFFFF) { ec = asio::error::invalid_argument; return -1; } switch (state) { case fword: if (*p >= '0' && *p <= '9') current_word = current_word * 16 + *p++ - '0'; else if (*p >= 'a' && *p <= 'f') current_word = current_word * 16 + *p++ - 'a' + 10; else if (*p >= 'A' && *p <= 'F') current_word = current_word * 16 + *p++ - 'A' + 10; else { if (num_front_bytes == 16) { ec = asio::error::invalid_argument; return -1; } bytes[num_front_bytes++] = (current_word >> 8) & 0xFF; bytes[num_front_bytes++] = current_word & 0xFF; current_word = 0; if (*p == ':') state = fcolon, ++p; else if (*p == '%') state = scope, ++p; else if (*p == 0) state = done; else { ec = asio::error::invalid_argument; return -1; } } break; case fcolon: if (*p == ':') state = bword, ++p; else state = fword; break; case bword: if (*p >= '0' && *p <= '9') current_word = current_word * 16 + *p++ - '0'; else if (*p >= 'a' && *p <= 'f') current_word = current_word * 16 + *p++ - 'a' + 10; else if (*p >= 'A' && *p <= 'F') current_word = current_word * 16 + *p++ - 'A' + 10; else { if (num_front_bytes + num_back_bytes == 16) { ec = asio::error::invalid_argument; return -1; } back_bytes[num_back_bytes++] = (current_word >> 8) & 0xFF; back_bytes[num_back_bytes++] = current_word & 0xFF; current_word = 0; if (*p == ':') state = bword, ++p; else if (*p == '%') state = scope, ++p; else if (*p == 0) state = done; else { ec = asio::error::invalid_argument; return -1; } } break; case scope: if (*p >= '0' && *p <= '9') current_word = current_word * 10 + *p++ - '0'; else if (*p == 0) *scope_id = current_word, state = done; else { ec = asio::error::invalid_argument; return -1; } break; default: break; } } for (int i = 0; i < num_back_bytes; ++i) bytes[16 - num_back_bytes + i] = back_bytes[i]; ec = asio::error_code(); return 1; } else { ec = asio::error::address_family_not_supported; return -1; } #elif defined(ASIO_WINDOWS) || defined(__CYGWIN__) using namespace std; // For memcpy and strcmp. if (af != ASIO_OS_DEF(AF_INET) && af != ASIO_OS_DEF(AF_INET6)) { ec = asio::error::address_family_not_supported; return -1; } union { socket_addr_type base; sockaddr_storage_type storage; sockaddr_in4_type v4; sockaddr_in6_type v6; } address; int address_length = sizeof(sockaddr_storage_type); #if defined(BOOST_NO_ANSI_APIS) || (defined(_MSC_VER) && (_MSC_VER >= 1800)) int num_wide_chars = static_cast(strlen(src)) + 1; LPWSTR wide_buffer = (LPWSTR)_alloca(num_wide_chars * sizeof(WCHAR)); ::MultiByteToWideChar(CP_ACP, 0, src, -1, wide_buffer, num_wide_chars); int result = error_wrapper(::WSAStringToAddressW( wide_buffer, af, 0, &address.base, &address_length), ec); #else int result = error_wrapper(::WSAStringToAddressA( const_cast(src), af, 0, &address.base, &address_length), ec); #endif if (af == ASIO_OS_DEF(AF_INET)) { if (result != socket_error_retval) { memcpy(dest, &address.v4.sin_addr, sizeof(in4_addr_type)); ec = asio::error_code(); } else if (strcmp(src, "255.255.255.255") == 0) { static_cast(dest)->s_addr = INADDR_NONE; ec = asio::error_code(); } } else // AF_INET6 { if (result != socket_error_retval) { memcpy(dest, &address.v6.sin6_addr, sizeof(in6_addr_type)); if (scope_id) *scope_id = address.v6.sin6_scope_id; ec = asio::error_code(); } } // Windows may not set an error code on failure. if (result == socket_error_retval && !ec) ec = asio::error::invalid_argument; if (result != socket_error_retval) ec = asio::error_code(); return result == socket_error_retval ? -1 : 1; #else // defined(ASIO_WINDOWS) || defined(__CYGWIN__) using namespace std; // For strchr, memcpy and atoi. // On some platforms, inet_pton fails if an address string contains a scope // id. Detect and remove the scope id before passing the string to inet_pton. const bool is_v6 = (af == ASIO_OS_DEF(AF_INET6)); const char* if_name = is_v6 ? strchr(src, '%') : 0; char src_buf[max_addr_v6_str_len + 1]; const char* src_ptr = src; if (if_name != 0) { if (if_name - src > max_addr_v6_str_len) { ec = asio::error::invalid_argument; return 0; } memcpy(src_buf, src, if_name - src); src_buf[if_name - src] = 0; src_ptr = src_buf; } int result = error_wrapper(::inet_pton(af, src_ptr, dest), ec); if (result <= 0 && !ec) ec = asio::error::invalid_argument; if (result > 0 && is_v6 && scope_id) { using namespace std; // For strchr and atoi. *scope_id = 0; if (if_name != 0) { in6_addr_type* ipv6_address = static_cast(dest); bool is_link_local = ((ipv6_address->s6_addr[0] == 0xfe) && ((ipv6_address->s6_addr[1] & 0xc0) == 0x80)); bool is_multicast_link_local = ((ipv6_address->s6_addr[0] == 0xff) && ((ipv6_address->s6_addr[1] & 0x0f) == 0x02)); if (is_link_local || is_multicast_link_local) *scope_id = if_nametoindex(if_name + 1); if (*scope_id == 0) *scope_id = atoi(if_name + 1); } } return result; #endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__) } int gethostname(char* name, int namelen, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS_RUNTIME) try { using namespace Windows::Foundation::Collections; using namespace Windows::Networking; using namespace Windows::Networking::Connectivity; IVectorView^ hostnames = NetworkInformation::GetHostNames(); for (unsigned i = 0; i < hostnames->Size; ++i) { HostName^ hostname = hostnames->GetAt(i); if (hostname->Type == HostNameType::DomainName) { std::wstring_convert> converter; std::string raw_name = converter.to_bytes(hostname->RawName->Data()); if (namelen > 0 && raw_name.size() < static_cast(namelen)) { strcpy_s(name, namelen, raw_name.c_str()); return 0; } } } return -1; } catch (Platform::Exception^ e) { ec = asio::error_code(e->HResult, asio::system_category()); return -1; } #else // defined(ASIO_WINDOWS_RUNTIME) int result = error_wrapper(::gethostname(name, namelen), ec); # if defined(ASIO_WINDOWS) if (result == 0) ec = asio::error_code(); # endif // defined(ASIO_WINDOWS) return result; #endif // defined(ASIO_WINDOWS_RUNTIME) } #if !defined(ASIO_WINDOWS_RUNTIME) #if !defined(ASIO_HAS_GETADDRINFO) // The following functions are only needed for emulation of getaddrinfo and // getnameinfo. inline asio::error_code translate_netdb_error(int error) { switch (error) { case 0: return asio::error_code(); case HOST_NOT_FOUND: return asio::error::host_not_found; case TRY_AGAIN: return asio::error::host_not_found_try_again; case NO_RECOVERY: return asio::error::no_recovery; case NO_DATA: return asio::error::no_data; default: ASIO_ASSERT(false); return asio::error::invalid_argument; } } inline hostent* gethostbyaddr(const char* addr, int length, int af, hostent* result, char* buffer, int buflength, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) (void)(buffer); (void)(buflength); hostent* retval = error_wrapper(::gethostbyaddr(addr, length, af), ec); if (!retval) return 0; ec = asio::error_code(); *result = *retval; return retval; #elif defined(__sun) || defined(__QNX__) int error = 0; hostent* retval = error_wrapper(::gethostbyaddr_r(addr, length, af, result, buffer, buflength, &error), ec); if (error) ec = translate_netdb_error(error); return retval; #elif defined(__MACH__) && defined(__APPLE__) (void)(buffer); (void)(buflength); int error = 0; hostent* retval = error_wrapper(::getipnodebyaddr( addr, length, af, &error), ec); if (error) ec = translate_netdb_error(error); if (!retval) return 0; *result = *retval; return retval; #else hostent* retval = 0; int error = 0; error_wrapper(::gethostbyaddr_r(addr, length, af, result, buffer, buflength, &retval, &error), ec); if (error) ec = translate_netdb_error(error); return retval; #endif } inline hostent* gethostbyname(const char* name, int af, struct hostent* result, char* buffer, int buflength, int ai_flags, asio::error_code& ec) { clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) (void)(buffer); (void)(buflength); (void)(ai_flags); if (af != ASIO_OS_DEF(AF_INET)) { ec = asio::error::address_family_not_supported; return 0; } hostent* retval = error_wrapper(::gethostbyname(name), ec); if (!retval) return 0; ec = asio::error_code(); *result = *retval; return result; #elif defined(__sun) || defined(__QNX__) (void)(ai_flags); if (af != ASIO_OS_DEF(AF_INET)) { ec = asio::error::address_family_not_supported; return 0; } int error = 0; hostent* retval = error_wrapper(::gethostbyname_r(name, result, buffer, buflength, &error), ec); if (error) ec = translate_netdb_error(error); return retval; #elif defined(__MACH__) && defined(__APPLE__) (void)(buffer); (void)(buflength); int error = 0; hostent* retval = error_wrapper(::getipnodebyname( name, af, ai_flags, &error), ec); if (error) ec = translate_netdb_error(error); if (!retval) return 0; *result = *retval; return retval; #else (void)(ai_flags); if (af != ASIO_OS_DEF(AF_INET)) { ec = asio::error::address_family_not_supported; return 0; } hostent* retval = 0; int error = 0; error_wrapper(::gethostbyname_r(name, result, buffer, buflength, &retval, &error), ec); if (error) ec = translate_netdb_error(error); return retval; #endif } inline void freehostent(hostent* h) { #if defined(__MACH__) && defined(__APPLE__) if (h) ::freehostent(h); #else (void)(h); #endif } // Emulation of getaddrinfo based on implementation in: // Stevens, W. R., UNIX Network Programming Vol. 1, 2nd Ed., Prentice-Hall 1998. struct gai_search { const char* host; int family; }; inline int gai_nsearch(const char* host, const addrinfo_type* hints, gai_search (&search)[2]) { int search_count = 0; if (host == 0 || host[0] == '\0') { if (hints->ai_flags & AI_PASSIVE) { // No host and AI_PASSIVE implies wildcard bind. switch (hints->ai_family) { case ASIO_OS_DEF(AF_INET): search[search_count].host = "0.0.0.0"; search[search_count].family = ASIO_OS_DEF(AF_INET); ++search_count; break; case ASIO_OS_DEF(AF_INET6): search[search_count].host = "0::0"; search[search_count].family = ASIO_OS_DEF(AF_INET6); ++search_count; break; case ASIO_OS_DEF(AF_UNSPEC): search[search_count].host = "0::0"; search[search_count].family = ASIO_OS_DEF(AF_INET6); ++search_count; search[search_count].host = "0.0.0.0"; search[search_count].family = ASIO_OS_DEF(AF_INET); ++search_count; break; default: break; } } else { // No host and not AI_PASSIVE means connect to local host. switch (hints->ai_family) { case ASIO_OS_DEF(AF_INET): search[search_count].host = "localhost"; search[search_count].family = ASIO_OS_DEF(AF_INET); ++search_count; break; case ASIO_OS_DEF(AF_INET6): search[search_count].host = "localhost"; search[search_count].family = ASIO_OS_DEF(AF_INET6); ++search_count; break; case ASIO_OS_DEF(AF_UNSPEC): search[search_count].host = "localhost"; search[search_count].family = ASIO_OS_DEF(AF_INET6); ++search_count; search[search_count].host = "localhost"; search[search_count].family = ASIO_OS_DEF(AF_INET); ++search_count; break; default: break; } } } else { // Host is specified. switch (hints->ai_family) { case ASIO_OS_DEF(AF_INET): search[search_count].host = host; search[search_count].family = ASIO_OS_DEF(AF_INET); ++search_count; break; case ASIO_OS_DEF(AF_INET6): search[search_count].host = host; search[search_count].family = ASIO_OS_DEF(AF_INET6); ++search_count; break; case ASIO_OS_DEF(AF_UNSPEC): search[search_count].host = host; search[search_count].family = ASIO_OS_DEF(AF_INET6); ++search_count; search[search_count].host = host; search[search_count].family = ASIO_OS_DEF(AF_INET); ++search_count; break; default: break; } } return search_count; } template inline T* gai_alloc(std::size_t size = sizeof(T)) { using namespace std; T* p = static_cast(::operator new(size, std::nothrow)); if (p) memset(p, 0, size); return p; } inline void gai_free(void* p) { ::operator delete(p); } inline void gai_strcpy(char* target, const char* source, std::size_t max_size) { using namespace std; #if defined(ASIO_HAS_SECURE_RTL) strcpy_s(target, max_size, source); #else // defined(ASIO_HAS_SECURE_RTL) *target = 0; if (max_size > 0) strncat(target, source, max_size - 1); #endif // defined(ASIO_HAS_SECURE_RTL) } enum { gai_clone_flag = 1 << 30 }; inline int gai_aistruct(addrinfo_type*** next, const addrinfo_type* hints, const void* addr, int family) { using namespace std; addrinfo_type* ai = gai_alloc(); if (ai == 0) return EAI_MEMORY; ai->ai_next = 0; **next = ai; *next = &ai->ai_next; ai->ai_canonname = 0; ai->ai_socktype = hints->ai_socktype; if (ai->ai_socktype == 0) ai->ai_flags |= gai_clone_flag; ai->ai_protocol = hints->ai_protocol; ai->ai_family = family; switch (ai->ai_family) { case ASIO_OS_DEF(AF_INET): { sockaddr_in4_type* sinptr = gai_alloc(); if (sinptr == 0) return EAI_MEMORY; sinptr->sin_family = ASIO_OS_DEF(AF_INET); memcpy(&sinptr->sin_addr, addr, sizeof(in4_addr_type)); ai->ai_addr = reinterpret_cast(sinptr); ai->ai_addrlen = sizeof(sockaddr_in4_type); break; } case ASIO_OS_DEF(AF_INET6): { sockaddr_in6_type* sin6ptr = gai_alloc(); if (sin6ptr == 0) return EAI_MEMORY; sin6ptr->sin6_family = ASIO_OS_DEF(AF_INET6); memcpy(&sin6ptr->sin6_addr, addr, sizeof(in6_addr_type)); ai->ai_addr = reinterpret_cast(sin6ptr); ai->ai_addrlen = sizeof(sockaddr_in6_type); break; } default: break; } return 0; } inline addrinfo_type* gai_clone(addrinfo_type* ai) { using namespace std; addrinfo_type* new_ai = gai_alloc(); if (new_ai == 0) return new_ai; new_ai->ai_next = ai->ai_next; ai->ai_next = new_ai; new_ai->ai_flags = 0; new_ai->ai_family = ai->ai_family; new_ai->ai_socktype = ai->ai_socktype; new_ai->ai_protocol = ai->ai_protocol; new_ai->ai_canonname = 0; new_ai->ai_addrlen = ai->ai_addrlen; new_ai->ai_addr = gai_alloc(ai->ai_addrlen); memcpy(new_ai->ai_addr, ai->ai_addr, ai->ai_addrlen); return new_ai; } inline int gai_port(addrinfo_type* aihead, int port, int socktype) { int num_found = 0; for (addrinfo_type* ai = aihead; ai; ai = ai->ai_next) { if (ai->ai_flags & gai_clone_flag) { if (ai->ai_socktype != 0) { ai = gai_clone(ai); if (ai == 0) return -1; // ai now points to newly cloned entry. } } else if (ai->ai_socktype != socktype) { // Ignore if mismatch on socket type. continue; } ai->ai_socktype = socktype; switch (ai->ai_family) { case ASIO_OS_DEF(AF_INET): { sockaddr_in4_type* sinptr = reinterpret_cast(ai->ai_addr); sinptr->sin_port = port; ++num_found; break; } case ASIO_OS_DEF(AF_INET6): { sockaddr_in6_type* sin6ptr = reinterpret_cast(ai->ai_addr); sin6ptr->sin6_port = port; ++num_found; break; } default: break; } } return num_found; } inline int gai_serv(addrinfo_type* aihead, const addrinfo_type* hints, const char* serv) { using namespace std; int num_found = 0; if ( #if defined(AI_NUMERICSERV) (hints->ai_flags & AI_NUMERICSERV) || #endif isdigit(static_cast(serv[0]))) { int port = htons(atoi(serv)); if (hints->ai_socktype) { // Caller specifies socket type. int rc = gai_port(aihead, port, hints->ai_socktype); if (rc < 0) return EAI_MEMORY; num_found += rc; } else { // Caller does not specify socket type. int rc = gai_port(aihead, port, SOCK_STREAM); if (rc < 0) return EAI_MEMORY; num_found += rc; rc = gai_port(aihead, port, SOCK_DGRAM); if (rc < 0) return EAI_MEMORY; num_found += rc; } } else { // Try service name with TCP first, then UDP. if (hints->ai_socktype == 0 || hints->ai_socktype == SOCK_STREAM) { servent* sptr = getservbyname(serv, "tcp"); if (sptr != 0) { int rc = gai_port(aihead, sptr->s_port, SOCK_STREAM); if (rc < 0) return EAI_MEMORY; num_found += rc; } } if (hints->ai_socktype == 0 || hints->ai_socktype == SOCK_DGRAM) { servent* sptr = getservbyname(serv, "udp"); if (sptr != 0) { int rc = gai_port(aihead, sptr->s_port, SOCK_DGRAM); if (rc < 0) return EAI_MEMORY; num_found += rc; } } } if (num_found == 0) { if (hints->ai_socktype == 0) { // All calls to getservbyname() failed. return EAI_NONAME; } else { // Service not supported for socket type. return EAI_SERVICE; } } return 0; } inline int gai_echeck(const char* host, const char* service, int flags, int family, int socktype, int protocol) { (void)(flags); (void)(protocol); // Host or service must be specified. if (host == 0 || host[0] == '\0') if (service == 0 || service[0] == '\0') return EAI_NONAME; // Check combination of family and socket type. switch (family) { case ASIO_OS_DEF(AF_UNSPEC): break; case ASIO_OS_DEF(AF_INET): case ASIO_OS_DEF(AF_INET6): if (service != 0 && service[0] != '\0') if (socktype != 0 && socktype != SOCK_STREAM && socktype != SOCK_DGRAM) return EAI_SOCKTYPE; break; default: return EAI_FAMILY; } return 0; } inline void freeaddrinfo_emulation(addrinfo_type* aihead) { addrinfo_type* ai = aihead; while (ai) { gai_free(ai->ai_addr); gai_free(ai->ai_canonname); addrinfo_type* ainext = ai->ai_next; gai_free(ai); ai = ainext; } } inline int getaddrinfo_emulation(const char* host, const char* service, const addrinfo_type* hintsp, addrinfo_type** result) { // Set up linked list of addrinfo structures. addrinfo_type* aihead = 0; addrinfo_type** ainext = &aihead; char* canon = 0; // Supply default hints if not specified by caller. addrinfo_type hints = addrinfo_type(); hints.ai_family = ASIO_OS_DEF(AF_UNSPEC); if (hintsp) hints = *hintsp; // If the resolution is not specifically for AF_INET6, remove the AI_V4MAPPED // and AI_ALL flags. #if defined(AI_V4MAPPED) if (hints.ai_family != ASIO_OS_DEF(AF_INET6)) hints.ai_flags &= ~AI_V4MAPPED; #endif #if defined(AI_ALL) if (hints.ai_family != ASIO_OS_DEF(AF_INET6)) hints.ai_flags &= ~AI_ALL; #endif // Basic error checking. int rc = gai_echeck(host, service, hints.ai_flags, hints.ai_family, hints.ai_socktype, hints.ai_protocol); if (rc != 0) { freeaddrinfo_emulation(aihead); return rc; } gai_search search[2]; int search_count = gai_nsearch(host, &hints, search); for (gai_search* sptr = search; sptr < search + search_count; ++sptr) { // Check for IPv4 dotted decimal string. in4_addr_type inaddr; asio::error_code ec; if (socket_ops::inet_pton(ASIO_OS_DEF(AF_INET), sptr->host, &inaddr, 0, ec) == 1) { if (hints.ai_family != ASIO_OS_DEF(AF_UNSPEC) && hints.ai_family != ASIO_OS_DEF(AF_INET)) { freeaddrinfo_emulation(aihead); gai_free(canon); return EAI_FAMILY; } if (sptr->family == ASIO_OS_DEF(AF_INET)) { rc = gai_aistruct(&ainext, &hints, &inaddr, ASIO_OS_DEF(AF_INET)); if (rc != 0) { freeaddrinfo_emulation(aihead); gai_free(canon); return rc; } } continue; } // Check for IPv6 hex string. in6_addr_type in6addr; if (socket_ops::inet_pton(ASIO_OS_DEF(AF_INET6), sptr->host, &in6addr, 0, ec) == 1) { if (hints.ai_family != ASIO_OS_DEF(AF_UNSPEC) && hints.ai_family != ASIO_OS_DEF(AF_INET6)) { freeaddrinfo_emulation(aihead); gai_free(canon); return EAI_FAMILY; } if (sptr->family == ASIO_OS_DEF(AF_INET6)) { rc = gai_aistruct(&ainext, &hints, &in6addr, ASIO_OS_DEF(AF_INET6)); if (rc != 0) { freeaddrinfo_emulation(aihead); gai_free(canon); return rc; } } continue; } // Look up hostname. hostent hent; char hbuf[8192] = ""; hostent* hptr = socket_ops::gethostbyname(sptr->host, sptr->family, &hent, hbuf, sizeof(hbuf), hints.ai_flags, ec); if (hptr == 0) { if (search_count == 2) { // Failure is OK if there are multiple searches. continue; } freeaddrinfo_emulation(aihead); gai_free(canon); if (ec == asio::error::host_not_found) return EAI_NONAME; if (ec == asio::error::host_not_found_try_again) return EAI_AGAIN; if (ec == asio::error::no_recovery) return EAI_FAIL; if (ec == asio::error::no_data) return EAI_NONAME; return EAI_NONAME; } // Check for address family mismatch if one was specified. if (hints.ai_family != ASIO_OS_DEF(AF_UNSPEC) && hints.ai_family != hptr->h_addrtype) { freeaddrinfo_emulation(aihead); gai_free(canon); socket_ops::freehostent(hptr); return EAI_FAMILY; } // Save canonical name first time. if (host != 0 && host[0] != '\0' && hptr->h_name && hptr->h_name[0] && (hints.ai_flags & AI_CANONNAME) && canon == 0) { std::size_t canon_len = strlen(hptr->h_name) + 1; canon = gai_alloc(canon_len); if (canon == 0) { freeaddrinfo_emulation(aihead); socket_ops::freehostent(hptr); return EAI_MEMORY; } gai_strcpy(canon, hptr->h_name, canon_len); } // Create an addrinfo structure for each returned address. for (char** ap = hptr->h_addr_list; *ap; ++ap) { rc = gai_aistruct(&ainext, &hints, *ap, hptr->h_addrtype); if (rc != 0) { freeaddrinfo_emulation(aihead); gai_free(canon); socket_ops::freehostent(hptr); return EAI_FAMILY; } } socket_ops::freehostent(hptr); } // Check if we found anything. if (aihead == 0) { gai_free(canon); return EAI_NONAME; } // Return canonical name in first entry. if (host != 0 && host[0] != '\0' && (hints.ai_flags & AI_CANONNAME)) { if (canon) { aihead->ai_canonname = canon; canon = 0; } else { std::size_t canonname_len = strlen(search[0].host) + 1; aihead->ai_canonname = gai_alloc(canonname_len); if (aihead->ai_canonname == 0) { freeaddrinfo_emulation(aihead); return EAI_MEMORY; } gai_strcpy(aihead->ai_canonname, search[0].host, canonname_len); } } gai_free(canon); // Process the service name. if (service != 0 && service[0] != '\0') { rc = gai_serv(aihead, &hints, service); if (rc != 0) { freeaddrinfo_emulation(aihead); return rc; } } // Return result to caller. *result = aihead; return 0; } inline asio::error_code getnameinfo_emulation( const socket_addr_type* sa, std::size_t salen, char* host, std::size_t hostlen, char* serv, std::size_t servlen, int flags, asio::error_code& ec) { using namespace std; const char* addr; size_t addr_len; unsigned short port; switch (sa->sa_family) { case ASIO_OS_DEF(AF_INET): if (salen != sizeof(sockaddr_in4_type)) { return ec = asio::error::invalid_argument; } addr = reinterpret_cast( &reinterpret_cast(sa)->sin_addr); addr_len = sizeof(in4_addr_type); port = reinterpret_cast(sa)->sin_port; break; case ASIO_OS_DEF(AF_INET6): if (salen != sizeof(sockaddr_in6_type)) { return ec = asio::error::invalid_argument; } addr = reinterpret_cast( &reinterpret_cast(sa)->sin6_addr); addr_len = sizeof(in6_addr_type); port = reinterpret_cast(sa)->sin6_port; break; default: return ec = asio::error::address_family_not_supported; } if (host && hostlen > 0) { if (flags & NI_NUMERICHOST) { if (socket_ops::inet_ntop(sa->sa_family, addr, host, hostlen, 0, ec) == 0) { return ec; } } else { hostent hent; char hbuf[8192] = ""; hostent* hptr = socket_ops::gethostbyaddr(addr, static_cast(addr_len), sa->sa_family, &hent, hbuf, sizeof(hbuf), ec); if (hptr && hptr->h_name && hptr->h_name[0] != '\0') { if (flags & NI_NOFQDN) { char* dot = strchr(hptr->h_name, '.'); if (dot) { *dot = 0; } } gai_strcpy(host, hptr->h_name, hostlen); socket_ops::freehostent(hptr); } else { socket_ops::freehostent(hptr); if (flags & NI_NAMEREQD) { return ec = asio::error::host_not_found; } if (socket_ops::inet_ntop(sa->sa_family, addr, host, hostlen, 0, ec) == 0) { return ec; } } } } if (serv && servlen > 0) { if (flags & NI_NUMERICSERV) { if (servlen < 6) { return ec = asio::error::no_buffer_space; } #if defined(ASIO_HAS_SECURE_RTL) sprintf_s(serv, servlen, "%u", ntohs(port)); #else // defined(ASIO_HAS_SECURE_RTL) sprintf(serv, "%u", ntohs(port)); #endif // defined(ASIO_HAS_SECURE_RTL) } else { #if defined(ASIO_HAS_PTHREADS) static ::pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; ::pthread_mutex_lock(&mutex); #endif // defined(ASIO_HAS_PTHREADS) servent* sptr = ::getservbyport(port, (flags & NI_DGRAM) ? "udp" : 0); if (sptr && sptr->s_name && sptr->s_name[0] != '\0') { gai_strcpy(serv, sptr->s_name, servlen); } else { if (servlen < 6) { return ec = asio::error::no_buffer_space; } #if defined(ASIO_HAS_SECURE_RTL) sprintf_s(serv, servlen, "%u", ntohs(port)); #else // defined(ASIO_HAS_SECURE_RTL) sprintf(serv, "%u", ntohs(port)); #endif // defined(ASIO_HAS_SECURE_RTL) } #if defined(ASIO_HAS_PTHREADS) ::pthread_mutex_unlock(&mutex); #endif // defined(ASIO_HAS_PTHREADS) } } ec = asio::error_code(); return ec; } #endif // !defined(ASIO_HAS_GETADDRINFO) inline asio::error_code translate_addrinfo_error(int error) { switch (error) { case 0: return asio::error_code(); case EAI_AGAIN: return asio::error::host_not_found_try_again; case EAI_BADFLAGS: return asio::error::invalid_argument; case EAI_FAIL: return asio::error::no_recovery; case EAI_FAMILY: return asio::error::address_family_not_supported; case EAI_MEMORY: return asio::error::no_memory; case EAI_NONAME: #if defined(EAI_ADDRFAMILY) case EAI_ADDRFAMILY: #endif #if defined(EAI_NODATA) && (EAI_NODATA != EAI_NONAME) case EAI_NODATA: #endif return asio::error::host_not_found; case EAI_SERVICE: return asio::error::service_not_found; case EAI_SOCKTYPE: return asio::error::socket_type_not_supported; default: // Possibly the non-portable EAI_SYSTEM. #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) return asio::error_code( WSAGetLastError(), asio::error::get_system_category()); #else return asio::error_code( errno, asio::error::get_system_category()); #endif } } asio::error_code getaddrinfo(const char* host, const char* service, const addrinfo_type& hints, addrinfo_type** result, asio::error_code& ec) { host = (host && *host) ? host : 0; service = (service && *service) ? service : 0; clear_last_error(); #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) # if defined(ASIO_HAS_GETADDRINFO) // Building for Windows XP, Windows Server 2003, or later. int error = ::getaddrinfo(host, service, &hints, result); return ec = translate_addrinfo_error(error); # else // Building for Windows 2000 or earlier. typedef int (WSAAPI *gai_t)(const char*, const char*, const addrinfo_type*, addrinfo_type**); if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32")) { if (gai_t gai = (gai_t)::GetProcAddress(winsock_module, "getaddrinfo")) { int error = gai(host, service, &hints, result); return ec = translate_addrinfo_error(error); } } int error = getaddrinfo_emulation(host, service, &hints, result); return ec = translate_addrinfo_error(error); # endif #elif !defined(ASIO_HAS_GETADDRINFO) int error = getaddrinfo_emulation(host, service, &hints, result); return ec = translate_addrinfo_error(error); #else int error = ::getaddrinfo(host, service, &hints, result); #if defined(__MACH__) && defined(__APPLE__) using namespace std; // For isdigit and atoi. if (error == 0 && service && isdigit(static_cast(service[0]))) { u_short_type port = host_to_network_short(atoi(service)); for (addrinfo_type* ai = *result; ai; ai = ai->ai_next) { switch (ai->ai_family) { case ASIO_OS_DEF(AF_INET): { sockaddr_in4_type* sinptr = reinterpret_cast(ai->ai_addr); if (sinptr->sin_port == 0) sinptr->sin_port = port; break; } case ASIO_OS_DEF(AF_INET6): { sockaddr_in6_type* sin6ptr = reinterpret_cast(ai->ai_addr); if (sin6ptr->sin6_port == 0) sin6ptr->sin6_port = port; break; } default: break; } } } #endif return ec = translate_addrinfo_error(error); #endif } asio::error_code background_getaddrinfo( const weak_cancel_token_type& cancel_token, const char* host, const char* service, const addrinfo_type& hints, addrinfo_type** result, asio::error_code& ec) { if (cancel_token.expired()) ec = asio::error::operation_aborted; else socket_ops::getaddrinfo(host, service, hints, result, ec); return ec; } void freeaddrinfo(addrinfo_type* ai) { #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) # if defined(ASIO_HAS_GETADDRINFO) // Building for Windows XP, Windows Server 2003, or later. ::freeaddrinfo(ai); # else // Building for Windows 2000 or earlier. typedef int (WSAAPI *fai_t)(addrinfo_type*); if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32")) { if (fai_t fai = (fai_t)::GetProcAddress(winsock_module, "freeaddrinfo")) { fai(ai); return; } } freeaddrinfo_emulation(ai); # endif #elif !defined(ASIO_HAS_GETADDRINFO) freeaddrinfo_emulation(ai); #else ::freeaddrinfo(ai); #endif } asio::error_code getnameinfo(const socket_addr_type* addr, std::size_t addrlen, char* host, std::size_t hostlen, char* serv, std::size_t servlen, int flags, asio::error_code& ec) { #if defined(ASIO_WINDOWS) || defined(__CYGWIN__) # if defined(ASIO_HAS_GETADDRINFO) // Building for Windows XP, Windows Server 2003, or later. clear_last_error(); int error = ::getnameinfo(addr, static_cast(addrlen), host, static_cast(hostlen), serv, static_cast(servlen), flags); return ec = translate_addrinfo_error(error); # else // Building for Windows 2000 or earlier. typedef int (WSAAPI *gni_t)(const socket_addr_type*, int, char*, DWORD, char*, DWORD, int); if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32")) { if (gni_t gni = (gni_t)::GetProcAddress(winsock_module, "getnameinfo")) { clear_last_error(); int error = gni(addr, static_cast(addrlen), host, static_cast(hostlen), serv, static_cast(servlen), flags); return ec = translate_addrinfo_error(error); } } clear_last_error(); return getnameinfo_emulation(addr, addrlen, host, hostlen, serv, servlen, flags, ec); # endif #elif !defined(ASIO_HAS_GETADDRINFO) using namespace std; // For memcpy. sockaddr_storage_type tmp_addr; memcpy(&tmp_addr, addr, addrlen); addr = reinterpret_cast(&tmp_addr); clear_last_error(); return getnameinfo_emulation(addr, addrlen, host, hostlen, serv, servlen, flags, ec); #else clear_last_error(); int error = ::getnameinfo(addr, addrlen, host, hostlen, serv, servlen, flags); return ec = translate_addrinfo_error(error); #endif } asio::error_code sync_getnameinfo( const socket_addr_type* addr, std::size_t addrlen, char* host, std::size_t hostlen, char* serv, std::size_t servlen, int sock_type, asio::error_code& ec) { // First try resolving with the service name. If that fails try resolving // but allow the service to be returned as a number. int flags = (sock_type == SOCK_DGRAM) ? NI_DGRAM : 0; socket_ops::getnameinfo(addr, addrlen, host, hostlen, serv, servlen, flags, ec); if (ec) { socket_ops::getnameinfo(addr, addrlen, host, hostlen, serv, servlen, flags | NI_NUMERICSERV, ec); } return ec; } asio::error_code background_getnameinfo( const weak_cancel_token_type& cancel_token, const socket_addr_type* addr, std::size_t addrlen, char* host, std::size_t hostlen, char* serv, std::size_t servlen, int sock_type, asio::error_code& ec) { if (cancel_token.expired()) { ec = asio::error::operation_aborted; } else { // First try resolving with the service name. If that fails try resolving // but allow the service to be returned as a number. int flags = (sock_type == SOCK_DGRAM) ? NI_DGRAM : 0; socket_ops::getnameinfo(addr, addrlen, host, hostlen, serv, servlen, flags, ec); if (ec) { socket_ops::getnameinfo(addr, addrlen, host, hostlen, serv, servlen, flags | NI_NUMERICSERV, ec); } } return ec; } #endif // !defined(ASIO_WINDOWS_RUNTIME) u_long_type network_to_host_long(u_long_type value) { #if defined(ASIO_WINDOWS_RUNTIME) unsigned char* value_p = reinterpret_cast(&value); u_long_type result = (static_cast(value_p[0]) << 24) | (static_cast(value_p[1]) << 16) | (static_cast(value_p[2]) << 8) | static_cast(value_p[3]); return result; #else // defined(ASIO_WINDOWS_RUNTIME) return ntohl(value); #endif // defined(ASIO_WINDOWS_RUNTIME) } u_long_type host_to_network_long(u_long_type value) { #if defined(ASIO_WINDOWS_RUNTIME) u_long_type result; unsigned char* result_p = reinterpret_cast(&result); result_p[0] = static_cast((value >> 24) & 0xFF); result_p[1] = static_cast((value >> 16) & 0xFF); result_p[2] = static_cast((value >> 8) & 0xFF); result_p[3] = static_cast(value & 0xFF); return result; #else // defined(ASIO_WINDOWS_RUNTIME) return htonl(value); #endif // defined(ASIO_WINDOWS_RUNTIME) } u_short_type network_to_host_short(u_short_type value) { #if defined(ASIO_WINDOWS_RUNTIME) unsigned char* value_p = reinterpret_cast(&value); u_short_type result = (static_cast(value_p[0]) << 8) | static_cast(value_p[1]); return result; #else // defined(ASIO_WINDOWS_RUNTIME) return ntohs(value); #endif // defined(ASIO_WINDOWS_RUNTIME) } u_short_type host_to_network_short(u_short_type value) { #if defined(ASIO_WINDOWS_RUNTIME) u_short_type result; unsigned char* result_p = reinterpret_cast(&result); result_p[0] = static_cast((value >> 8) & 0xFF); result_p[1] = static_cast(value & 0xFF); return result; #else // defined(ASIO_WINDOWS_RUNTIME) return htons(value); #endif // defined(ASIO_WINDOWS_RUNTIME) } } // namespace socket_ops } // namespace detail } // namespace asio #include "asio/detail/pop_options.hpp" #endif // ASIO_DETAIL_SOCKET_OPS_IPP