Sha256: 2ddffb935dc39799cdf4af1e092a1fc85979d1f906cb54dfb4aae90d8b4b516f
Contents?: true
Size: 1.54 KB
Versions: 8
Compression:
Stored size: 1.54 KB
Contents
require "bundler/setup" require 'tensor_stream' require 'benchmark' tf = TensorStream learning_rate = 0.01 training_epochs = 1000 display_step = 50 train_X = [3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1] train_Y = [1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3] n_samples = train_X.size X = tf.placeholder("float") Y = tf.placeholder("float") # Set model weights W = tf.variable(rand, name: "weight") b = tf.variable(rand, name: "bias") # Construct a linear model pred = X * W + b # Mean squared error cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / ( 2 * n_samples) optimizer = TensorStream::Train::GradientDescentOptimizer.new(learning_rate).minimize(cost) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() tf.session do |sess| start_time = Time.now sess.run(init) (0..training_epochs).each do |epoch| train_X.zip(train_Y).each do |x,y| sess.run(optimizer, feed_dict: {X => x, Y => y}) end if (epoch+1) % display_step == 0 c = sess.run(cost, feed_dict: {X => train_X, Y => train_Y}) puts("Epoch:", '%04d' % (epoch+1), "cost=", c, \ "W=", sess.run(W), "b=", sess.run(b)) end end puts("Optimization Finished!") training_cost = sess.run(cost, feed_dict: { X => train_X, Y => train_Y}) puts("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n') puts("time elapsed ", Time.now.to_i - start_time.to_i) end
Version data entries
8 entries across 8 versions & 1 rubygems