Sha256: 2d3c845833f9343312314eca7f597a03537d643baa5dd95241377e4fecec9bac
Contents?: true
Size: 1.95 KB
Versions: 14
Compression:
Stored size: 1.95 KB
Contents
/************************************************************************/ /* */ /* kernel.h */ /* */ /* User defined kernel function. Feel free to plug in your own. */ /* */ /* Copyright: Thorsten Joachims */ /* Date: 16.12.97 */ /* */ /************************************************************************/ /* KERNEL_PARM is defined in svm_common.h The field 'custom' is reserved for */ /* parameters of the user defined kernel. You can also access and use */ /* the parameters of the other kernels. Just replace the line return((double)(1.0)); with your own kernel. */ /* Example: The following computes the polynomial kernel. sprod_ss computes the inner product between two sparse vectors. return((CFLOAT)pow(kernel_parm->coef_lin*sprod_ss(a->words,b->words) +kernel_parm->coef_const,(double)kernel_parm->poly_degree)); */ /* If you are implementing a kernel that is not based on a feature/value representation, you might want to make use of the field "userdefined" in SVECTOR. By default, this field will contain whatever string you put behind a # sign in the example file. So, if a line in your training file looks like -1 1:3 5:6 #abcdefg then the SVECTOR field "words" will contain the vector 1:3 5:6, and "userdefined" will contain the string "abcdefg". */ double custom_kernel(KERNEL_PARM *kernel_parm, SVECTOR *a, SVECTOR *b) /* plug in you favorite kernel */ { return((double)(1.0)); }
Version data entries
14 entries across 14 versions & 2 rubygems