# xLearn [xLearn](https://github.com/aksnzhy/xlearn) - the high performance machine learning library - for Ruby Supports: - Linear models - Factorization machines - Field-aware factorization machines [![Build Status](https://travis-ci.org/ankane/xlearn.svg?branch=master)](https://travis-ci.org/ankane/xlearn) ## Installation Add this line to your application’s Gemfile: ```ruby gem 'xlearn' ``` ## Getting Started Prep your data ```ruby x = [[1, 2], [3, 4], [5, 6], [7, 8]] y = [1, 2, 3, 4] ``` Train a model ```ruby model = XLearn::Linear.new(task: "reg") model.fit(x, y) ``` Use `XLearn::FM` for factorization machines and `XLearn::FFM` for field-aware factorization machines Make predictions ```ruby model.predict(x) ``` Save the model to a file ```ruby model.save_model("model.bin") ``` Load the model from a file ```ruby model.load_model("model.bin") ``` Save a text version of the model ```ruby model.save_txt("model.txt") ``` Pass a validation set ```ruby model.fit(x_train, y_train, eval_set: [x_val, y_val]) ``` Train online ```ruby model.partial_fit(x_train, y_train) ``` Get the bias term, linear term, and latent factors ```ruby model.bias_term model.linear_term model.latent_factors # fm and ffm only ``` ## Parameters Specify parameters ```ruby model = XLearn::Linear.new(k: 20, epoch: 50) ``` Supports the same parameters as [Python](https://xlearn-doc.readthedocs.io/en/latest/all_api/index.html) ## Cross-Validation Cross-validation ```ruby model.cv(x, y) ``` Specify the number of folds ```ruby model.cv(x, y, folds: 5) ``` ## Data Data can be an array of arrays ```ruby [[1, 2, 3], [4, 5, 6]] ``` Or a Daru data frame ```ruby Daru::DataFrame.from_csv("houses.csv") ``` Or a Numo NArray ```ruby Numo::DFloat.new(3, 2).seq ``` ## Performance For large datasets, read data directly from files ```ruby model.fit("train.txt", eval_set: "validate.txt") model.predict("test.txt") model.cv("train.txt") ``` For linear models and factorization machines, use CSV: ```txt label,value_1,value_2,...,value_n ``` Or the `libsvm` format (better for sparse data): ```txt label index_1:value_1 index_2:value_2 ... index_n:value_n ``` > You can also use commas instead of spaces for separators For field-aware factorization machines, use the `libffm` format: ```txt label field_1:index_1:value_1 field_2:index_2:value_2 ... ``` > You can also use commas instead of spaces for separators You can also write predictions directly to a file ```ruby model.predict("test.txt", out_path: "predictions.txt") ``` ## Credits This library is modeled after xLearn’s [Scikit-learn API](https://xlearn-doc.readthedocs.io/en/latest/python_api/index.html). ## History View the [changelog](https://github.com/ankane/xlearn/blob/master/CHANGELOG.md) ## Contributing Everyone is encouraged to help improve this project. Here are a few ways you can help: - [Report bugs](https://github.com/ankane/xlearn/issues) - Fix bugs and [submit pull requests](https://github.com/ankane/xlearn/pulls) - Write, clarify, or fix documentation - Suggest or add new features To get started with development and testing: ```sh git clone https://github.com/ankane/xlearn.git cd xlearn bundle install bundle exec rake vendor:all bundle exec rake test ```