// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*- /* * GlobalHistogramBinarizer.cpp * zxing * * Copyright 2010 ZXing authors. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include using zxing::GlobalHistogramBinarizer; using zxing::Binarizer; using zxing::ArrayRef; using zxing::Ref; using zxing::BitArray; using zxing::BitMatrix; // VC++ using zxing::LuminanceSource; namespace { const int LUMINANCE_BITS = 5; const int LUMINANCE_SHIFT = 8 - LUMINANCE_BITS; const int LUMINANCE_BUCKETS = 1 << LUMINANCE_BITS; const ArrayRef EMPTY (0); } GlobalHistogramBinarizer::GlobalHistogramBinarizer(Ref source) : Binarizer(source), luminances(EMPTY), buckets(LUMINANCE_BUCKETS) {} GlobalHistogramBinarizer::~GlobalHistogramBinarizer() {} void GlobalHistogramBinarizer::initArrays(int luminanceSize) { if (luminances->size() < luminanceSize) { luminances = ArrayRef(luminanceSize); } for (int x = 0; x < LUMINANCE_BUCKETS; x++) { buckets[x] = 0; } } Ref GlobalHistogramBinarizer::getBlackRow(int y, Ref row) { // std::cerr << "gbr " << y << std::endl; LuminanceSource& source = *getLuminanceSource(); int width = source.getWidth(); if (row == NULL || static_cast(row->getSize()) < width) { row = new BitArray(width); } else { row->clear(); } initArrays(width); ArrayRef localLuminances = source.getRow(y, luminances); if (false) { std::cerr << "gbr " << y << " r "; for(int i=0, e=localLuminances->size(); i < e; ++i) { std::cerr << 0+localLuminances[i] << " "; } std::cerr << std::endl; } ArrayRef localBuckets = buckets; for (int x = 0; x < width; x++) { int pixel = localLuminances[x] & 0xff; localBuckets[pixel >> LUMINANCE_SHIFT]++; } int blackPoint = estimateBlackPoint(localBuckets); // std::cerr << "gbr bp " << y << " " << blackPoint << std::endl; int left = localLuminances[0] & 0xff; int center = localLuminances[1] & 0xff; for (int x = 1; x < width - 1; x++) { int right = localLuminances[x + 1] & 0xff; // A simple -1 4 -1 box filter with a weight of 2. int luminance = ((center << 2) - left - right) >> 1; if (luminance < blackPoint) { row->set(x); } left = center; center = right; } return row; } Ref GlobalHistogramBinarizer::getBlackMatrix() { LuminanceSource& source = *getLuminanceSource(); int width = source.getWidth(); int height = source.getHeight(); Ref matrix(new BitMatrix(width, height)); // Quickly calculates the histogram by sampling four rows from the image. // This proved to be more robust on the blackbox tests than sampling a // diagonal as we used to do. initArrays(width); ArrayRef localBuckets = buckets; for (int y = 1; y < 5; y++) { int row = height * y / 5; ArrayRef localLuminances = source.getRow(row, luminances); int right = (width << 2) / 5; for (int x = width / 5; x < right; x++) { int pixel = localLuminances[x] & 0xff; localBuckets[pixel >> LUMINANCE_SHIFT]++; } } int blackPoint = estimateBlackPoint(localBuckets); ArrayRef localLuminances = source.getMatrix(); for (int y = 0; y < height; y++) { int offset = y * width; for (int x = 0; x < width; x++) { int pixel = localLuminances[offset + x] & 0xff; if (pixel < blackPoint) { matrix->set(x, y); } } } return matrix; } using namespace std; int GlobalHistogramBinarizer::estimateBlackPoint(ArrayRef const& buckets) { // Find tallest peak in histogram int numBuckets = buckets->size(); int maxBucketCount = 0; int firstPeak = 0; int firstPeakSize = 0; if (false) { for (int x = 0; x < numBuckets; x++) { cerr << buckets[x] << " "; } cerr << endl; } for (int x = 0; x < numBuckets; x++) { if (buckets[x] > firstPeakSize) { firstPeak = x; firstPeakSize = buckets[x]; } if (buckets[x] > maxBucketCount) { maxBucketCount = buckets[x]; } } // Find second-tallest peak -- well, another peak that is tall and not // so close to the first one int secondPeak = 0; int secondPeakScore = 0; for (int x = 0; x < numBuckets; x++) { int distanceToBiggest = x - firstPeak; // Encourage more distant second peaks by multiplying by square of distance int score = buckets[x] * distanceToBiggest * distanceToBiggest; if (score > secondPeakScore) { secondPeak = x; secondPeakScore = score; } } if (firstPeak > secondPeak) { int temp = firstPeak; firstPeak = secondPeak; secondPeak = temp; } // Kind of arbitrary; if the two peaks are very close, then we figure there is // so little dynamic range in the image, that discriminating black and white // is too error-prone. // Decoding the image/line is either pointless, or may in some cases lead to // a false positive for 1D formats, which are relatively lenient. // We arbitrarily say "close" is // "<= 1/16 of the total histogram buckets apart" // std::cerr << "! " << secondPeak << " " << firstPeak << " " << numBuckets << std::endl; if (secondPeak - firstPeak <= numBuckets >> 4) { throw NotFoundException(); } // Find a valley between them that is low and closer to the white peak int bestValley = secondPeak - 1; int bestValleyScore = -1; for (int x = secondPeak - 1; x > firstPeak; x--) { int fromFirst = x - firstPeak; // Favor a "valley" that is not too close to either peak -- especially not // the black peak -- and that has a low value of course int score = fromFirst * fromFirst * (secondPeak - x) * (maxBucketCount - buckets[x]); if (score > bestValleyScore) { bestValley = x; bestValleyScore = score; } } // std::cerr << "bps " << (bestValley << LUMINANCE_SHIFT) << std::endl; return bestValley << LUMINANCE_SHIFT; } Ref GlobalHistogramBinarizer::createBinarizer(Ref source) { return Ref (new GlobalHistogramBinarizer(source)); }