/* * Argon2 source code package * * Written by Daniel Dinu and Dmitry Khovratovich, 2015 * * This work is licensed under a Creative Commons CC0 1.0 License/Waiver. * * You should have received a copy of the CC0 Public Domain Dedication along * with * this software. If not, see * . */ #include #include #include #include "argon2.h" #include "core.h" #include "ref.h" #include "blake2/blamka-round-ref.h" #include "blake2/blake2-impl.h" #include "blake2/blake2.h" void fill_block(const block *prev_block, const block *ref_block, block *next_block) { block blockR, block_tmp; unsigned i; copy_block(&blockR, ref_block); xor_block(&blockR, prev_block); copy_block(&block_tmp, &blockR); /* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then (16,17,..31)... finally (112,113,...127) */ for (i = 0; i < 8; ++i) { BLAKE2_ROUND_NOMSG( blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2], blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5], blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8], blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11], blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14], blockR.v[16 * i + 15]); } /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */ for (i = 0; i < 8; i++) { BLAKE2_ROUND_NOMSG( blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16], blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33], blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64], blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81], blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112], blockR.v[2 * i + 113]); } copy_block(next_block, &block_tmp); xor_block(next_block, &blockR); } void generate_addresses(const argon2_instance_t *instance, const argon2_position_t *position, uint64_t *pseudo_rands) { block zero_block, input_block, address_block; uint32_t i; init_block_value(&zero_block, 0); init_block_value(&input_block, 0); init_block_value(&address_block, 0); if (instance != NULL && position != NULL) { input_block.v[0] = position->pass; input_block.v[1] = position->lane; input_block.v[2] = position->slice; input_block.v[3] = instance->memory_blocks; input_block.v[4] = instance->passes; input_block.v[5] = instance->type; for (i = 0; i < instance->segment_length; ++i) { if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) { input_block.v[6]++; fill_block(&zero_block, &input_block, &address_block); fill_block(&zero_block, &address_block, &address_block); } pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK]; } } } void fill_segment(const argon2_instance_t *instance, argon2_position_t position) { block *ref_block = NULL, *curr_block = NULL; uint64_t pseudo_rand, ref_index, ref_lane; uint32_t prev_offset, curr_offset; uint32_t starting_index; uint32_t i; int data_independent_addressing = (instance->type == Argon2_i); /* Pseudo-random values that determine the reference block position */ uint64_t *pseudo_rands = NULL; if (instance == NULL) { return; } pseudo_rands = (uint64_t *)malloc(sizeof(uint64_t) * (instance->segment_length)); if (pseudo_rands == NULL) { return; } if (data_independent_addressing) { generate_addresses(instance, &position, pseudo_rands); } starting_index = 0; if ((0 == position.pass) && (0 == position.slice)) { starting_index = 2; /* we have already generated the first two blocks */ } /* Offset of the current block */ curr_offset = position.lane * instance->lane_length + position.slice * instance->segment_length + starting_index; if (0 == curr_offset % instance->lane_length) { /* Last block in this lane */ prev_offset = curr_offset + instance->lane_length - 1; } else { /* Previous block */ prev_offset = curr_offset - 1; } for (i = starting_index; i < instance->segment_length; ++i, ++curr_offset, ++prev_offset) { /*1.1 Rotating prev_offset if needed */ if (curr_offset % instance->lane_length == 1) { prev_offset = curr_offset - 1; } /* 1.2 Computing the index of the reference block */ /* 1.2.1 Taking pseudo-random value from the previous block */ if (data_independent_addressing) { pseudo_rand = pseudo_rands[i]; } else { pseudo_rand = instance->memory[prev_offset].v[0]; } /* 1.2.2 Computing the lane of the reference block */ ref_lane = ((pseudo_rand >> 32)) % instance->lanes; if ((position.pass == 0) && (position.slice == 0)) { /* Can not reference other lanes yet */ ref_lane = position.lane; } /* 1.2.3 Computing the number of possible reference block within the * lane. */ position.index = i; ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF, ref_lane == position.lane); /* 2 Creating a new block */ ref_block = instance->memory + instance->lane_length * ref_lane + ref_index; curr_block = instance->memory + curr_offset; fill_block(instance->memory + prev_offset, ref_block, curr_block); } free(pseudo_rands); }