/*
* Argon2 source code package
*
* Written by Daniel Dinu and Dmitry Khovratovich, 2015
*
* This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
*
* You should have received a copy of the CC0 Public Domain Dedication along
* with
* this software. If not, see
* .
*/
#include
#include
#include
#include "argon2.h"
#include "core.h"
#include "ref.h"
#include "blake2/blamka-round-ref.h"
#include "blake2/blake2-impl.h"
#include "blake2/blake2.h"
void fill_block(const block *prev_block, const block *ref_block,
block *next_block) {
block blockR, block_tmp;
unsigned i;
copy_block(&blockR, ref_block);
xor_block(&blockR, prev_block);
copy_block(&block_tmp, &blockR);
/* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then
(16,17,..31)... finally (112,113,...127) */
for (i = 0; i < 8; ++i) {
BLAKE2_ROUND_NOMSG(
blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
blockR.v[16 * i + 15]);
}
/* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
(2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
for (i = 0; i < 8; i++) {
BLAKE2_ROUND_NOMSG(
blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
blockR.v[2 * i + 113]);
}
copy_block(next_block, &block_tmp);
xor_block(next_block, &blockR);
}
void generate_addresses(const argon2_instance_t *instance,
const argon2_position_t *position,
uint64_t *pseudo_rands) {
block zero_block, input_block, address_block;
uint32_t i;
init_block_value(&zero_block, 0);
init_block_value(&input_block, 0);
init_block_value(&address_block, 0);
if (instance != NULL && position != NULL) {
input_block.v[0] = position->pass;
input_block.v[1] = position->lane;
input_block.v[2] = position->slice;
input_block.v[3] = instance->memory_blocks;
input_block.v[4] = instance->passes;
input_block.v[5] = instance->type;
for (i = 0; i < instance->segment_length; ++i) {
if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
input_block.v[6]++;
fill_block(&zero_block, &input_block, &address_block);
fill_block(&zero_block, &address_block, &address_block);
}
pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
}
}
}
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position) {
block *ref_block = NULL, *curr_block = NULL;
uint64_t pseudo_rand, ref_index, ref_lane;
uint32_t prev_offset, curr_offset;
uint32_t starting_index;
uint32_t i;
int data_independent_addressing = (instance->type == Argon2_i);
/* Pseudo-random values that determine the reference block position */
uint64_t *pseudo_rands = NULL;
if (instance == NULL) {
return;
}
pseudo_rands =
(uint64_t *)malloc(sizeof(uint64_t) * (instance->segment_length));
if (pseudo_rands == NULL) {
return;
}
if (data_independent_addressing) {
generate_addresses(instance, &position, pseudo_rands);
}
starting_index = 0;
if ((0 == position.pass) && (0 == position.slice)) {
starting_index = 2; /* we have already generated the first two blocks */
}
/* Offset of the current block */
curr_offset = position.lane * instance->lane_length +
position.slice * instance->segment_length + starting_index;
if (0 == curr_offset % instance->lane_length) {
/* Last block in this lane */
prev_offset = curr_offset + instance->lane_length - 1;
} else {
/* Previous block */
prev_offset = curr_offset - 1;
}
for (i = starting_index; i < instance->segment_length;
++i, ++curr_offset, ++prev_offset) {
/*1.1 Rotating prev_offset if needed */
if (curr_offset % instance->lane_length == 1) {
prev_offset = curr_offset - 1;
}
/* 1.2 Computing the index of the reference block */
/* 1.2.1 Taking pseudo-random value from the previous block */
if (data_independent_addressing) {
pseudo_rand = pseudo_rands[i];
} else {
pseudo_rand = instance->memory[prev_offset].v[0];
}
/* 1.2.2 Computing the lane of the reference block */
ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
if ((position.pass == 0) && (position.slice == 0)) {
/* Can not reference other lanes yet */
ref_lane = position.lane;
}
/* 1.2.3 Computing the number of possible reference block within the
* lane.
*/
position.index = i;
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
ref_lane == position.lane);
/* 2 Creating a new block */
ref_block =
instance->memory + instance->lane_length * ref_lane + ref_index;
curr_block = instance->memory + curr_offset;
fill_block(instance->memory + prev_offset, ref_block, curr_block);
}
free(pseudo_rands);
}