///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2008-2012 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_TREAP_HPP #define BOOST_INTRUSIVE_TREAP_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace intrusive { /// @cond template struct treap_setopt { typedef ValueTraits value_traits; typedef Compare compare; typedef PrioCompare priority_compare; typedef SizeType size_type; static const bool constant_time_size = ConstantTimeSize; }; template struct treap_set_defaults : pack_options < none , base_hook , constant_time_size , size_type , compare > , priority > >::type {}; /// @endcond //! The class template treap is an intrusive treap container that //! is used to construct intrusive set and multiset containers. The no-throw //! guarantee holds only, if the value_compare object and priority_compare object //! don't throw. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<>, //! \c compare<> and \c priority_compare<> #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif class treap_impl : private detail::clear_on_destructor_base > { template friend class detail::clear_on_destructor_base; public: typedef typename Config::value_traits value_traits; /// @cond static const bool external_value_traits = detail::external_value_traits_bool_is_true::value; typedef typename detail::eval_if_c < external_value_traits , detail::eval_value_traits , detail::identity >::type real_value_traits; /// @endcond typedef typename real_value_traits::pointer pointer; typedef typename real_value_traits::const_pointer const_pointer; typedef typename pointer_traits::element_type value_type; typedef typename pointer_traits::reference reference; typedef typename pointer_traits::reference const_reference; typedef typename pointer_traits::difference_type difference_type; typedef value_type key_type; typedef typename Config::size_type size_type; typedef typename Config::compare value_compare; typedef typename Config::priority_compare priority_compare; typedef value_compare key_compare; typedef tree_iterator iterator; typedef tree_iterator const_iterator; typedef boost::intrusive::detail::reverse_iterator reverse_iterator; typedef boost::intrusive::detail::reverse_iteratorconst_reverse_iterator; typedef typename real_value_traits::node_traits node_traits; typedef typename node_traits::node node; typedef typename pointer_traits ::template rebind_pointer ::type node_ptr; typedef typename pointer_traits ::template rebind_pointer ::type const_node_ptr; typedef treap_algorithms node_algorithms; static const bool constant_time_size = Config::constant_time_size; static const bool stateful_value_traits = detail::is_stateful_value_traits::value; /// @cond private: typedef detail::size_holder size_traits; //noncopyable BOOST_MOVABLE_BUT_NOT_COPYABLE(treap_impl) enum { safemode_or_autounlink = (int)real_value_traits::link_mode == (int)auto_unlink || (int)real_value_traits::link_mode == (int)safe_link }; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(constant_time_size && ((int)real_value_traits::link_mode == (int)auto_unlink))); struct header_plus_size : public size_traits { node header_; }; struct node_plus_pred_t : public detail::ebo_functor_holder { node_plus_pred_t(const value_compare &comp, const priority_compare &p_comp) : detail::ebo_functor_holder(comp) , header_plus_priority_size_(p_comp) {} struct header_plus_priority_size : public detail::ebo_functor_holder { header_plus_priority_size(const priority_compare &p_comp) : detail::ebo_functor_holder(p_comp) {} header_plus_size header_plus_size_; } header_plus_priority_size_; }; struct data_t : public treap_impl::value_traits { typedef typename treap_impl::value_traits value_traits; data_t(const value_compare & comp, const priority_compare &pcomp, const value_traits &val_traits) : value_traits(val_traits), node_plus_pred_(comp, pcomp) {} node_plus_pred_t node_plus_pred_; } data_; const value_compare &priv_comp() const { return data_.node_plus_pred_.get(); } value_compare &priv_comp() { return data_.node_plus_pred_.get(); } const priority_compare &priv_pcomp() const { return data_.node_plus_pred_.header_plus_priority_size_.get(); } priority_compare &priv_pcomp() { return data_.node_plus_pred_.header_plus_priority_size_.get(); } const value_traits &priv_value_traits() const { return data_; } value_traits &priv_value_traits() { return data_; } node_ptr priv_header_ptr() { return pointer_traits::pointer_to(data_.node_plus_pred_.header_plus_priority_size_.header_plus_size_.header_); } const_node_ptr priv_header_ptr() const { return pointer_traits::pointer_to(data_.node_plus_pred_.header_plus_priority_size_.header_plus_size_.header_); } static node_ptr uncast(const const_node_ptr & ptr) { return pointer_traits::const_cast_from(ptr); } size_traits &priv_size_traits() { return data_.node_plus_pred_.header_plus_priority_size_.header_plus_size_; } const size_traits &priv_size_traits() const { return data_.node_plus_pred_.header_plus_priority_size_.header_plus_size_; } const real_value_traits &get_real_value_traits(detail::bool_) const { return data_; } const real_value_traits &get_real_value_traits(detail::bool_) const { return data_.get_value_traits(*this); } real_value_traits &get_real_value_traits(detail::bool_) { return data_; } real_value_traits &get_real_value_traits(detail::bool_) { return data_.get_value_traits(*this); } /// @endcond public: const real_value_traits &get_real_value_traits() const { return this->get_real_value_traits(detail::bool_()); } real_value_traits &get_real_value_traits() { return this->get_real_value_traits(detail::bool_()); } typedef typename node_algorithms::insert_commit_data insert_commit_data; //! Effects: Constructs an empty treap. //! //! Complexity: Constant. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor of the value_compare/priority_compare objects throw. Basic guarantee. explicit treap_impl( const value_compare &cmp = value_compare() , const priority_compare &pcmp = priority_compare() , const value_traits &v_traits = value_traits()) : data_(cmp, pcmp, v_traits) { node_algorithms::init_header(this->priv_header_ptr()); this->priv_size_traits().set_size(size_type(0)); } //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //! Effects: Constructs an empty treap and inserts elements from //! [b, e). //! //! Complexity: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is the distance between first and last. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare/priority_compare objects //! throw. Basic guarantee. template treap_impl( bool unique, Iterator b, Iterator e , const value_compare &cmp = value_compare() , const priority_compare &pcmp = priority_compare() , const value_traits &v_traits = value_traits()) : data_(cmp, pcmp, v_traits) { node_algorithms::init_header(this->priv_header_ptr()); this->priv_size_traits().set_size(size_type(0)); if(unique) this->insert_unique(b, e); else this->insert_equal(b, e); } //! Effects: to-do //! treap_impl(BOOST_RV_REF(treap_impl) x) : data_( ::boost::move(x.priv_comp()) , ::boost::move(x.priv_pcomp()) , ::boost::move(x.priv_value_traits())) { node_algorithms::init_header(this->priv_header_ptr()); this->priv_size_traits().set_size(size_type(0)); this->swap(x); } //! Effects: to-do //! treap_impl& operator=(BOOST_RV_REF(treap_impl) x) { this->swap(x); return *this; } //! Effects: Detaches all elements from this. The objects in the set //! are not deleted (i.e. no destructors are called), but the nodes according to //! the value_traits template parameter are reinitialized and thus can be reused. //! //! Complexity: Linear to elements contained in *this //! if constant-time size option is disabled. Constant time otherwise. //! //! Throws: Nothing. ~treap_impl() {} //! Effects: Returns an iterator pointing to the beginning of the treap. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator begin() { return iterator (node_traits::get_left(this->priv_header_ptr()), this); } //! Effects: Returns a const_iterator pointing to the beginning of the treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator begin() const { return this->cbegin(); } //! Effects: Returns a const_iterator pointing to the beginning of the treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cbegin() const { return const_iterator (node_traits::get_left(this->priv_header_ptr()), this); } //! Effects: Returns an iterator pointing to the end of the treap. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator end() { return iterator (this->priv_header_ptr(), this); } //! Effects: Returns a const_iterator pointing to the end of the treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator end() const { return this->cend(); } //! Effects: Returns a const_iterator pointing to the end of the treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cend() const { return const_iterator (uncast(this->priv_header_ptr()), this); } //! Effects: Returns an iterator pointing to the highest priority object of the treap. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator top() { return this->empty() ? this->end() : iterator (node_traits::get_parent(this->priv_header_ptr()), this); } //! Effects: Returns a const_iterator pointing to the highest priority object of the treap.. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator top() const { return this->ctop(); } //! Effects: Returns a const_iterator pointing to the highest priority object of the treap.. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator ctop() const { return this->empty() ? this->cend() : const_iterator (node_traits::get_parent(this->priv_header_ptr()), this); } //! Effects: Returns a reverse_iterator pointing to the beginning of the //! reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rbegin() { return reverse_iterator(this->end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rbegin() const { return const_reverse_iterator(this->end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crbegin() const { return const_reverse_iterator(this->end()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rend() { return reverse_iterator(this->begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rend() const { return const_reverse_iterator(this->begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crend() const { return const_reverse_iterator(this->begin()); } //! Effects: Returns a reverse_iterator pointing to the highest priority object of the //! reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rtop() { return reverse_iterator(this->top()); } //! Effects: Returns a const_reverse_iterator pointing to the highest priority objec //! of the reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rtop() const { return const_reverse_iterator(this->top()); } //! Effects: Returns a const_reverse_iterator pointing to the highest priority object //! of the reversed treap. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crtop() const { return const_reverse_iterator(this->top()); } //! Precondition: end_iterator must be a valid end iterator //! of treap. //! //! Effects: Returns a const reference to the treap associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static treap_impl &container_from_end_iterator(iterator end_iterator) { return priv_container_from_end_iterator(end_iterator); } //! Precondition: end_iterator must be a valid end const_iterator //! of treap. //! //! Effects: Returns a const reference to the treap associated to the iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const treap_impl &container_from_end_iterator(const_iterator end_iterator) { return priv_container_from_end_iterator(end_iterator); } //! Precondition: it must be a valid iterator //! of treap. //! //! Effects: Returns a const reference to the treap associated to the iterator //! //! Throws: Nothing. //! //! Complexity: Logarithmic. static treap_impl &container_from_iterator(iterator it) { return priv_container_from_iterator(it); } //! Precondition: it must be a valid end const_iterator //! of treap. //! //! Effects: Returns a const reference to the treap associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Logarithmic. static const treap_impl &container_from_iterator(const_iterator it) { return priv_container_from_iterator(it); } //! Effects: Returns the value_compare object used by the treap. //! //! Complexity: Constant. //! //! Throws: If value_compare copy-constructor throws. value_compare value_comp() const { return this->priv_comp(); } //! Effects: Returns the priority_compare object used by the treap. //! //! Complexity: Constant. //! //! Throws: If priority_compare copy-constructor throws. priority_compare priority_comp() const { return this->priv_pcomp(); } //! Effects: Returns true if the container is empty. //! //! Complexity: Constant. //! //! Throws: Nothing. bool empty() const { return node_algorithms::unique(this->priv_header_ptr()); } //! Effects: Returns the number of elements stored in the treap. //! //! Complexity: Linear to elements contained in *this //! if constant-time size option is disabled. Constant time otherwise. //! //! Throws: Nothing. size_type size() const { if(constant_time_size) return this->priv_size_traits().get_size(); else{ return (size_type)node_algorithms::size(this->priv_header_ptr()); } } //! Effects: Swaps the contents of two treaps. //! //! Complexity: Constant. //! //! Throws: If the comparison functor's swap call throws. void swap(treap_impl& other) { //This can throw using std::swap; swap(priv_comp(), priv_comp()); swap(priv_pcomp(), priv_pcomp()); //These can't throw node_algorithms::swap_tree(this->priv_header_ptr(), other.priv_header_ptr()); if(constant_time_size){ size_type backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(other.priv_size_traits().get_size()); other.priv_size_traits().set_size(backup); } } //! Requires: value must be an lvalue //! //! Effects: Inserts value into the treap before the upper bound. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If the internal value_compare or priority_compare functions throw. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal(reference value) { detail::key_nodeptr_comp key_node_comp(priv_comp(), this); detail::key_nodeptr_comp key_node_pcomp(priv_pcomp(), this); node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); iterator ret(node_algorithms::insert_equal_upper_bound (this->priv_header_ptr(), to_insert, key_node_comp, key_node_pcomp), this); this->priv_size_traits().increment(); return ret; } //! Requires: value must be an lvalue, and "hint" must be //! a valid iterator. //! //! Effects: Inserts x into the treap, using "hint" as a hint to //! where it will be inserted. If "hint" is the upper_bound //! the insertion takes constant time (two comparisons in the worst case) //! //! Complexity: Logarithmic in general, but it is amortized //! constant time if t is inserted immediately before hint. //! //! Throws: If the internal value_compare or priority_compare functions throw. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal(const_iterator hint, reference value) { detail::key_nodeptr_comp key_node_comp(priv_comp(), this); detail::key_nodeptr_comp key_node_pcomp(priv_pcomp(), this); node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); iterator ret (node_algorithms::insert_equal (this->priv_header_ptr(), hint.pointed_node(), to_insert, key_node_comp, key_node_pcomp), this); this->priv_size_traits().increment(); return ret; } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Inserts a each element of a range into the treap //! before the upper bound of the key of each element. //! //! Complexity: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! Throws: If the internal value_compare or priority_compare functions throw. //! Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_equal(Iterator b, Iterator e) { iterator iend(this->end()); for (; b != e; ++b) this->insert_equal(iend, *b); } //! Requires: value must be an lvalue //! //! Effects: Inserts value into the treap if the value //! is not already present. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If the internal value_compare or priority_compare functions throw. //! Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair insert_unique(reference value) { insert_commit_data commit_data; std::pair ret = insert_unique_check(value, priv_comp(), priv_pcomp(), commit_data); if(!ret.second) return ret; return std::pair (insert_unique_commit(value, commit_data), true); } //! Requires: value must be an lvalue, and "hint" must be //! a valid iterator //! //! Effects: Tries to insert x into the treap, using "hint" as a hint //! to where it will be inserted. //! //! Complexity: Logarithmic in general, but it is amortized //! constant time (two comparisons in the worst case) //! if t is inserted immediately before hint. //! //! Throws: If the internal value_compare or priority_compare functions throw. //! Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_unique(const_iterator hint, reference value) { insert_commit_data commit_data; std::pair ret = insert_unique_check(hint, value, priv_comp(), priv_pcomp(), commit_data); if(!ret.second) return ret.first; return insert_unique_commit(value, commit_data); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Tries to insert each element of a range into the treap. //! //! Complexity: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! Throws: If the internal value_compare or priority_compare functions throw. //! Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_unique(Iterator b, Iterator e) { if(this->empty()){ iterator iend(this->end()); for (; b != e; ++b) this->insert_unique(iend, *b); } else{ for (; b != e; ++b) this->insert_unique(*b); } } //! Requires: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. //! key_value_pcomp must be a comparison function that induces //! the same strict weak ordering as priority_compare. The difference is that //! key_value_pcomp and key_value_comp compare an arbitrary key with the contained values. //! //! Effects: Checks if a value can be inserted in the container, using //! a user provided key instead of the value itself. //! //! Returns: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! Complexity: Average complexity is at most logarithmic. //! //! Throws: If the key_value_comp or key_value_pcomp //! ordering functions throw. Strong guarantee. //! //! Notes: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that //! part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the container. template std::pair insert_unique_check ( const KeyType &key, KeyValueCompare key_value_comp , KeyValuePrioCompare key_value_pcomp, insert_commit_data &commit_data) { detail::key_nodeptr_comp comp(key_value_comp, this); detail::key_nodeptr_comp pcomp(key_value_pcomp, this); std::pair ret = (node_algorithms::insert_unique_check (this->priv_header_ptr(), key, comp, pcomp, commit_data)); return std::pair(iterator(ret.first, this), ret.second); } //! Requires: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. //! key_value_pcomp must be a comparison function that induces //! the same strict weak ordering as priority_compare. The difference is that //! key_value_pcomp and key_value_comp compare an arbitrary key with the contained values. //! //! Effects: Checks if a value can be inserted in the container, using //! a user provided key instead of the value itself, using "hint" //! as a hint to where it will be inserted. //! //! Returns: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! Complexity: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //! Throws: If the key_value_comp or key_value_pcomp //! ordering functions throw. Strong guarantee. //! //! Notes: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! constructing that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that key //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This can give a total //! constant-time complexity to the insertion: check(O(1)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the container. template std::pair insert_unique_check ( const_iterator hint, const KeyType &key , KeyValueCompare key_value_comp , KeyValuePrioCompare key_value_pcomp , insert_commit_data &commit_data) { detail::key_nodeptr_comp comp(key_value_comp, this); detail::key_nodeptr_comp pcomp(key_value_pcomp, this); std::pair ret = (node_algorithms::insert_unique_check (this->priv_header_ptr(), hint.pointed_node(), key, comp, pcomp, commit_data)); return std::pair(iterator(ret.first, this), ret.second); } //! Requires: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the container between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //! Effects: Inserts the value in the avl_set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //! Returns: An iterator to the newly inserted object. //! //! Complexity: Constant time. //! //! Throws: Nothing //! //! Notes: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. iterator insert_unique_commit(reference value, const insert_commit_data &commit_data) { node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); node_algorithms::insert_unique_commit(this->priv_header_ptr(), to_insert, commit_data); this->priv_size_traits().increment(); return iterator(to_insert, this); } //! Requires: value must be an lvalue, "pos" must be //! a valid iterator (or end) and must be the succesor of value //! once inserted according to the predicate //! //! Effects: Inserts x into the treap before "pos". //! //! Complexity: Constant time. //! //! Throws: If the internal priority_compare function throws. Strong guarantee. //! //! Note: This function does not check preconditions so if "pos" is not //! the successor of "value" treap ordering invariant will be broken. //! This is a low-level function to be used only for performance reasons //! by advanced users. iterator insert_before(const_iterator pos, reference value) { node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); detail::key_nodeptr_comp pcomp(priv_pcomp(), this); iterator ret (node_algorithms::insert_before (this->priv_header_ptr(), pos.pointed_node(), to_insert, pcomp), this); this->priv_size_traits().increment(); return ret; } //! Requires: value must be an lvalue, and it must be no less //! than the greatest inserted key //! //! Effects: Inserts x into the treap in the last position. //! //! Complexity: Constant time. //! //! Throws: If the internal priority_compare function throws. Strong guarantee. //! //! Note: This function does not check preconditions so if value is //! less than the greatest inserted key treap ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_back(reference value) { node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); detail::key_nodeptr_comp pcomp(priv_pcomp(), this); node_algorithms::push_back(this->priv_header_ptr(), to_insert, pcomp); this->priv_size_traits().increment(); } //! Requires: value must be an lvalue, and it must be no greater //! than the minimum inserted key //! //! Effects: Inserts x into the treap in the first position. //! //! Complexity: Constant time. //! //! Throws: If the internal priority_compare function throws. Strong guarantee. //! //! Note: This function does not check preconditions so if value is //! greater than the minimum inserted key treap ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_front(reference value) { node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); detail::key_nodeptr_comp pcomp(priv_pcomp(), this); node_algorithms::push_front(this->priv_header_ptr(), to_insert, pcomp); this->priv_size_traits().increment(); } //! Effects: Erases the element pointed to by pos. //! //! Complexity: Average complexity for erase element is constant time. //! //! Throws: if the internal priority_compare function throws. Strong guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator i) { const_iterator ret(i); ++ret; node_ptr to_erase(i.pointed_node()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!node_algorithms::unique(to_erase)); detail::key_nodeptr_comp key_node_pcomp(priv_pcomp(), this); node_algorithms::erase(this->priv_header_ptr(), to_erase, key_node_pcomp); this->priv_size_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); return ret.unconst(); } //! Effects: Erases the range pointed to by b end e. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Throws: if the internal priority_compare function throws. Strong guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator b, const_iterator e) { size_type n; return private_erase(b, e, n); } //! Effects: Erases all the elements with the given value. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: if the internal priority_compare function throws. Strong guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return this->erase(value, priv_comp()); } //! Effects: Erases all the elements with the given key. //! according to the comparison functor "comp". //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: if the internal priority_compare function throws. //! Equivalent guarantee to while(beg != end) erase(beg++); //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase(const KeyType& key, KeyValueCompare comp /// @cond , typename detail::enable_if_c::value >::type * = 0 /// @endcond ) { std::pair p = this->equal_range(key, comp); size_type n; private_erase(p.first, p.second, n); return n; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //! Complexity: Average complexity for erase element is constant time. //! //! Throws: if the internal priority_compare function throws. Strong guarantee. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(const_iterator i, Disposer disposer) { node_ptr to_erase(i.pointed_node()); iterator ret(this->erase(i)); disposer(get_real_value_traits().to_value_ptr(to_erase)); return ret; } #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_and_dispose(const_iterator(i), disposer); } #endif //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Throws: if the internal priority_compare function throws. Strong guarantee. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { size_type n; return private_erase(b, e, n, disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: if the priority_compare function throws then weak guarantee and heap invariants are broken. //! The safest thing would be to clear or destroy the container. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase_and_dispose(const_reference value, Disposer disposer) { std::pair p = this->equal_range(value); size_type n; private_erase(p.first, p.second, n, disposer); return n; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: if the priority_compare function throws then weak guarantee and heap invariants are broken. //! The safest thing would be to clear or destroy the container. //! //! Note: Invalidates the iterators //! to the erased elements. template size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer /// @cond , typename detail::enable_if_c::value >::type * = 0 /// @endcond ) { std::pair p = this->equal_range(key, comp); size_type n; private_erase(p.first, p.second, n, disposer); return n; } //! Effects: Erases all of the elements. //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { if(safemode_or_autounlink){ this->clear_and_dispose(detail::null_disposer()); } else{ node_algorithms::init_header(priv_header_ptr()); this->priv_size_traits().set_size(0); } } //! Effects: Erases all of the elements calling disposer(p) for //! each node to be erased. //! Complexity: Average complexity for is at most O(log(size() + N)), //! where N is the number of elements in the container. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. Calls N times to disposer functor. template void clear_and_dispose(Disposer disposer) { node_algorithms::clear_and_dispose(this->priv_header_ptr() , detail::node_disposer(disposer, this)); node_algorithms::init_header(this->priv_header_ptr()); this->priv_size_traits().set_size(0); } //! Effects: Returns the number of contained elements with the given value //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given value. //! //! Throws: Nothing. size_type count(const_reference value) const { return this->count(value, priv_comp()); } //! Effects: Returns the number of contained elements with the given key //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! Throws: Nothing. template size_type count(const KeyType &key, KeyValueCompare comp) const { std::pair ret = this->equal_range(key, comp); return std::distance(ret.first, ret.second); } //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. iterator lower_bound(const_reference value) { return this->lower_bound(value, priv_comp()); } //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. const_iterator lower_bound(const_reference value) const { return this->lower_bound(value, priv_comp()); } //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template iterator lower_bound(const KeyType &key, KeyValueCompare comp) { detail::key_nodeptr_comp key_node_comp(comp, this); return iterator(node_algorithms::lower_bound (this->priv_header_ptr(), key, key_node_comp), this); } //! Effects: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template const_iterator lower_bound(const KeyType &key, KeyValueCompare comp) const { detail::key_nodeptr_comp key_node_comp(comp, this); return const_iterator(node_algorithms::lower_bound (this->priv_header_ptr(), key, key_node_comp), this); } //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. iterator upper_bound(const_reference value) { return this->upper_bound(value, priv_comp()); } //! Effects: Returns an iterator to the first element whose //! key is greater than k according to comp or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template iterator upper_bound(const KeyType &key, KeyValueCompare comp) { detail::key_nodeptr_comp key_node_comp(comp, this); return iterator(node_algorithms::upper_bound (this->priv_header_ptr(), key, key_node_comp), this); } //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. const_iterator upper_bound(const_reference value) const { return this->upper_bound(value, priv_comp()); } //! Effects: Returns an iterator to the first element whose //! key is greater than k according to comp or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template const_iterator upper_bound(const KeyType &key, KeyValueCompare comp) const { detail::key_nodeptr_comp key_node_comp(comp, this); return const_iterator(node_algorithms::upper_bound (this->priv_header_ptr(), key, key_node_comp), this); } //! Effects: Finds an iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. iterator find(const_reference value) { return this->find(value, priv_comp()); } //! Effects: Finds an iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template iterator find(const KeyType &key, KeyValueCompare comp) { detail::key_nodeptr_comp key_node_comp(comp, this); return iterator (node_algorithms::find(this->priv_header_ptr(), key, key_node_comp), this); } //! Effects: Finds a const_iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. const_iterator find(const_reference value) const { return this->find(value, priv_comp()); } //! Effects: Finds a const_iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template const_iterator find(const KeyType &key, KeyValueCompare comp) const { detail::key_nodeptr_comp key_node_comp(comp, this); return const_iterator (node_algorithms::find(this->priv_header_ptr(), key, key_node_comp), this); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. std::pair equal_range(const_reference value) { return this->equal_range(value, priv_comp()); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template std::pair equal_range(const KeyType &key, KeyValueCompare comp) { detail::key_nodeptr_comp key_node_comp(comp, this); std::pair ret (node_algorithms::equal_range(this->priv_header_ptr(), key, key_node_comp)); return std::pair(iterator(ret.first, this), iterator(ret.second, this)); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. std::pair equal_range(const_reference value) const { return this->equal_range(value, priv_comp()); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: Nothing. template std::pair equal_range(const KeyType &key, KeyValueCompare comp) const { detail::key_nodeptr_comp key_node_comp(comp, this); std::pair ret (node_algorithms::equal_range(this->priv_header_ptr(), key, key_node_comp)); return std::pair(const_iterator(ret.first, this), const_iterator(ret.second, this)); } //! Requires: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If the predicate throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair bounded_range (const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) { return this->bounded_range(lower_value, upper_value, priv_comp(), left_closed, right_closed); } //! Requires: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template std::pair bounded_range (const KeyType &lower_key, const KeyType &upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) { detail::key_nodeptr_comp key_node_comp(comp, this); std::pair ret (node_algorithms::bounded_range (this->priv_header_ptr(), lower_key, upper_key, key_node_comp, left_closed, right_closed)); return std::pair(iterator(ret.first, this), iterator(ret.second, this)); } //! Requires: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If the predicate throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair bounded_range (const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) const { return this->bounded_range(lower_value, upper_value, priv_comp(), left_closed, right_closed); } //! Requires: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template std::pair bounded_range (const KeyType &lower_key, const KeyType &upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) const { detail::key_nodeptr_comp key_node_comp(comp, this); std::pair ret (node_algorithms::bounded_range (this->priv_header_ptr(), lower_key, upper_key, key_node_comp, left_closed, right_closed)); return std::pair(const_iterator(ret.first, this), const_iterator(ret.second, this)); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. Copies the predicate from the source container. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws or predicate copy assignment throws. Basic guarantee. template void clone_from(const treap_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); if(!src.empty()){ detail::exception_disposer rollback(*this, disposer); node_algorithms::clone (src.priv_header_ptr() ,this->priv_header_ptr() ,detail::node_cloner(cloner, this) ,detail::node_disposer(disposer, this)); this->priv_size_traits().set_size(src.priv_size_traits().get_size()); this->priv_comp() = src.priv_comp(); rollback.release(); } } //! Effects: Unlinks the leftmost node from the treap. //! //! Complexity: Average complexity is constant time. //! //! Throws: Nothing. //! //! Notes: This function breaks the treap and the treap can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the treap. pointer unlink_leftmost_without_rebalance() { node_ptr to_be_disposed(node_algorithms::unlink_leftmost_without_rebalance (this->priv_header_ptr())); if(!to_be_disposed) return 0; this->priv_size_traits().decrement(); if(safemode_or_autounlink)//If this is commented does not work with normal_link node_algorithms::init(to_be_disposed); return get_real_value_traits().to_value_ptr(to_be_disposed); } //! Requires: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any treap. //! //! Effects: Replaces replace_this in its position in the //! treap with with_this. The treap does not need to be rebalanced. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering and priority rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { node_algorithms::replace_node( get_real_value_traits().to_node_ptr(*replace_this) , this->priv_header_ptr() , get_real_value_traits().to_node_ptr(with_this)); if(safemode_or_autounlink) node_algorithms::init(replace_this.pointed_node()); } //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static iterator s_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); return iterator (value_traits::to_node_ptr(value), 0); } //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static const_iterator s_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); return const_iterator (value_traits::to_node_ptr(const_cast (value)), 0); } //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. iterator iterator_to(reference value) { return iterator (value_traits::to_node_ptr(value), this); } //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator iterator_to(const_reference value) const { return const_iterator (value_traits::to_node_ptr(const_cast (value)), this); } //! Requires: value shall not be in a treap. //! //! Effects: init_node puts the hook of a value in a well-known default //! state. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { node_algorithms::init(value_traits::to_node_ptr(value)); } /// @cond private: template iterator private_erase(const_iterator b, const_iterator e, size_type &n, Disposer disposer) { for(n = 0; b != e; ++n) this->erase_and_dispose(b++, disposer); return b.unconst(); } iterator private_erase(const_iterator b, const_iterator e, size_type &n) { for(n = 0; b != e; ++n) this->erase(b++); return b.unconst(); } /// @endcond private: static treap_impl &priv_container_from_end_iterator(const const_iterator &end_iterator) { header_plus_size *r = detail::parent_from_member ( boost::intrusive::detail::to_raw_pointer(end_iterator.pointed_node()), &header_plus_size::header_); typename node_plus_pred_t::header_plus_priority_size *n = detail::parent_from_member < typename node_plus_pred_t::header_plus_priority_size , header_plus_size> (r, &node_plus_pred_t::header_plus_priority_size::header_plus_size_); node_plus_pred_t *pn = detail::parent_from_member < node_plus_pred_t , typename node_plus_pred_t::header_plus_priority_size> (n, &node_plus_pred_t::header_plus_priority_size_); data_t *d = detail::parent_from_member(pn, &data_t::node_plus_pred_); treap_impl *tr = detail::parent_from_member(d, &treap_impl::data_); return *tr; } static treap_impl &priv_container_from_iterator(const const_iterator &it) { return priv_container_from_end_iterator(it.end_iterator_from_it()); } }; #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator< #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const treap_impl &x, const treap_impl &y) #else (const treap_impl &x, const treap_impl &y) #endif { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif bool operator== #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const treap_impl &x, const treap_impl &y) #else (const treap_impl &x, const treap_impl &y) #endif { typedef treap_impl tree_type; typedef typename tree_type::const_iterator const_iterator; if(tree_type::constant_time_size && x.size() != y.size()){ return false; } const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); if(tree_type::constant_time_size){ while (i1 != end1 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1; } else{ const_iterator end2 = y.end(); while (i1 != end1 && i2 != end2 && *i1 == *i2) { ++i1; ++i2; } return i1 == end1 && i2 == end2; } } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator!= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const treap_impl &x, const treap_impl &y) #else (const treap_impl &x, const treap_impl &y) #endif { return !(x == y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator> #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const treap_impl &x, const treap_impl &y) #else (const treap_impl &x, const treap_impl &y) #endif { return y < x; } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator<= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const treap_impl &x, const treap_impl &y) #else (const treap_impl &x, const treap_impl &y) #endif { return !(y < x); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator>= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const treap_impl &x, const treap_impl &y) #else (const treap_impl &x, const treap_impl &y) #endif { return !(x < y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline void swap #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (treap_impl &x, treap_impl &y) #else (treap_impl &x, treap_impl &y) #endif { x.swap(y); } /// @cond #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct make_treap_opt { typedef typename pack_options < treap_set_defaults, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4 #else Options... #endif >::type packed_options; typedef typename detail::get_value_traits ::type value_traits; typedef treap_setopt < value_traits , typename packed_options::compare , typename packed_options::priority , typename packed_options::size_type , packed_options::constant_time_size > type; }; /// @endcond //! Helper metafunction to define a \c treap that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct make_trie { /// @cond typedef treap_impl < typename make_treap_opt::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif class treap : public make_trie::type { typedef typename make_trie ::type Base; BOOST_MOVABLE_BUT_NOT_COPYABLE(treap) public: typedef typename Base::value_compare value_compare; typedef typename Base::priority_compare priority_compare; typedef typename Base::value_traits value_traits; typedef typename Base::real_value_traits real_value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); treap( const value_compare &cmp = value_compare() , const priority_compare &pcmp = priority_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, pcmp, v_traits) {} template treap( bool unique, Iterator b, Iterator e , const value_compare &cmp = value_compare() , const priority_compare &pcmp = priority_compare() , const value_traits &v_traits = value_traits()) : Base(unique, b, e, cmp, pcmp, v_traits) {} treap(BOOST_RV_REF(treap) x) : Base(::boost::move(static_cast(x))) {} treap& operator=(BOOST_RV_REF(treap) x) { this->Base::operator=(::boost::move(static_cast(x))); return *this; } static treap &container_from_end_iterator(iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static const treap &container_from_end_iterator(const_iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static treap &container_from_it(iterator it) { return static_cast(Base::container_from_iterator(it)); } static const treap &container_from_it(const_iterator it) { return static_cast(Base::container_from_iterator(it)); } }; #endif } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_TREAP_HPP