module Statistics module Distribution class Normal attr_accessor :mean, :standard_deviation, :variance alias_method :mode, :mean def initialize(avg, std) self.mean = avg.to_r self.standard_deviation = std.to_r self.variance = std.to_r**2 end def cumulative_function(value) (1/2.0) * (1.0 + Math.erf((value - mean)/(standard_deviation * Math.sqrt(2.0)))) end def density_function(value) return 0 if standard_deviation <= 0 up_right = (value - mean)**2.0 down_right = 2.0 * variance right = Math.exp(-(up_right/down_right)) left_down = Math.sqrt(2.0 * Math::PI * variance) left_up = 1.0 (left_up/(left_down) * right) end ## Marsaglia polar method implementation for random gaussian (normal) number generation. # References: # https://en.wikipedia.org/wiki/Marsaglia_polar_method # https://math.stackexchange.com/questions/69245/transform-uniform-distribution-to-normal-distribution-using-lindeberg-l%C3%A9vy-clt # https://www.projectrhea.org/rhea/index.php/The_principles_for_how_to_generate_random_samples_from_a_Gaussian_distribution def random(elements: 1, seed: Random.new_seed) results = [] # Setup seed srand(seed) # Number of random numbers to be generated. elements.times do x, y, r = 0.0, 0.0, 0.0 # Find an (x, y) point in the x^2 + y^2 < 1 circumference. loop do x = 2.0 * rand - 1.0 y = 2.0 * rand - 1.0 r = (x ** 2) + (y ** 2) break unless r >= 1.0 || r == 0 end # Project the random point to the required random distance r = Math.sqrt(-2.0 * Math.log(r) / r) # Transform the random distance to a gaussian value and append it to the results array results << mean + x * r * standard_deviation end if elements == 1 results.first else results end end end class StandardNormal < Normal def initialize super(0, 1) # Mean = 0, Std = 1 end def density_function(value) pow = (value**2)/2.0 euler = Math.exp(-pow) euler/Math.sqrt(2 * Math::PI) end end # Inverse Standard Normal distribution: # References: # https://en.wikipedia.org/wiki/Inverse_distribution # http://www.source-code.biz/snippets/vbasic/9.htm class InverseStandardNormal < StandardNormal A1 = -39.6968302866538 A2 = 220.946098424521 A3 = -275.928510446969 A4 = 138.357751867269 A5 = -30.6647980661472 A6 = 2.50662827745924 B1 = -54.4760987982241 B2 = 161.585836858041 B3 = -155.698979859887 B4 = 66.8013118877197 B5 = -13.2806815528857 C1 = -7.78489400243029E-03 C2 = -0.322396458041136 C3 = -2.40075827716184 C4 = -2.54973253934373 C5 = 4.37466414146497 C6 = 2.93816398269878 D1 = 7.78469570904146E-03 D2 = 0.32246712907004 D3 = 2.445134137143 D4 = 3.75440866190742 P_LOW = 0.02425 P_HIGH = 1 - P_LOW def density_function(_) raise NotImplementedError end def random(elements: 1, seed: Random.new_seed) raise NotImplementedError end def cumulative_function(value) return if value < 0.0 || value > 1.0 return -1.0 * Float::INFINITY if value.zero? return Float::INFINITY if value == 1.0 if value < P_LOW q = Math.sqrt((Math.log(value) * -2.0)) (((((C1 * q + C2) * q + C3) * q + C4) * q + C5) * q + C6) / ((((D1 * q + D2) * q + D3) * q + D4) * q + 1.0) elsif value <= P_HIGH q = value - 0.5 r = q ** 2 (((((A1 * r + A2) * r + A3) * r + A4) * r + A5) * r + A6) * q / (((((B1 * r + B2) * r + B3) * r + B4) * r + B5) * r + 1.0) else q = Math.sqrt((Math.log(1 - value) * -2.0)) - (((((C1 * q + C2) * q + C3) * q + C4) * q + C5) * q + C6) / ((((D1 * q + D2) * q + D3) * q + D4) * q + 1) end end end end end