/****************************************************************************** ** Filename: cnTraining.cpp ** Purpose: Generates a normproto and pffmtable. ** Author: Dan Johnson ** Revisment: Christy Russon ** History: Fri Aug 18 08:53:50 1989, DSJ, Created. ** 5/25/90, DSJ, Adapted to multiple feature types. ** Tuesday, May 17, 1998 Changes made to make feature specific and ** simplify structures. First step in simplifying training process. ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/ /**---------------------------------------------------------------------------- Include Files and Type Defines ----------------------------------------------------------------------------**/ #include "oldlist.h" #include "efio.h" #include "emalloc.h" #include "featdefs.h" #include "tessopt.h" #include "ocrfeatures.h" #include "general.h" #include "clusttool.h" #include "cluster.h" #include "name2char.h" #include #include #include #include "unichar.h" #define MAXNAMESIZE 80 #define MAX_NUM_SAMPLES 10000 #define PROGRAM_FEATURE_TYPE "cn" #define MINSD (1.0f / 64.0f) int row_number; /* cjn: fixes link problem */ typedef struct { char *Label; int SampleCount; LIST List; } LABELEDLISTNODE, *LABELEDLIST; #define round(x,frag)(floor(x/frag+.5)*frag) /**---------------------------------------------------------------------------- Public Function Prototypes ----------------------------------------------------------------------------**/ int main ( int argc, char **argv); /**---------------------------------------------------------------------------- Private Function Prototypes ----------------------------------------------------------------------------**/ void ParseArguments( int argc, char **argv); char *GetNextFilename (); void ReadTrainingSamples ( FILE *File, LIST* TrainingSamples); LABELEDLIST FindList ( LIST List, char *Label); LABELEDLIST NewLabeledList ( char *Label); void WriteTrainingSamples ( char *Directory, LIST CharList); void WriteNormProtos ( char *Directory, LIST LabeledProtoList, CLUSTERER *Clusterer); void FreeTrainingSamples ( LIST CharList); void FreeNormProtoList ( LIST CharList); void FreeLabeledList ( LABELEDLIST LabeledList); CLUSTERER *SetUpForClustering( LABELEDLIST CharSample); /* PARAMDESC *ConvertToPARAMDESC( PARAM_DESC* Param_Desc, int N); */ void AddToNormProtosList( LIST* NormProtoList, LIST ProtoList, char* CharName); void WriteProtos( FILE *File, uinT16 N, LIST ProtoList, BOOL8 WriteSigProtos, BOOL8 WriteInsigProtos); int NumberOfProtos( LIST ProtoList, BOOL8 CountSigProtos, BOOL8 CountInsigProtos); /**---------------------------------------------------------------------------- Global Data Definitions and Declarations ----------------------------------------------------------------------------**/ static char FontName[MAXNAMESIZE]; /* globals used for parsing command line arguments */ static char *Directory = NULL; static int MaxNumSamples = MAX_NUM_SAMPLES; static int Argc; static char **Argv; /* globals used to control what information is saved in the output file */ static BOOL8 ShowAllSamples = FALSE; static BOOL8 ShowSignificantProtos = TRUE; static BOOL8 ShowInsignificantProtos = FALSE; /* global variable to hold configuration parameters to control clustering */ //-M 0.025 -B 0.05 -I 0.8 -C 1e-3 static CLUSTERCONFIG Config = { elliptical, 0.025, 0.05, 0.8, 1e-3, 0 }; static FLOAT32 RoundingAccuracy = 0.0; /**---------------------------------------------------------------------------- Public Code ----------------------------------------------------------------------------**/ /*---------------------------------------------------------------------------*/ int main ( int argc, char **argv) /* ** Parameters: ** argc number of command line arguments ** argv array of command line arguments ** Globals: none ** Operation: ** This program reads in a text file consisting of feature ** samples from a training page in the following format: ** ** FontName CharName NumberOfFeatureTypes(N) ** FeatureTypeName1 NumberOfFeatures(M) ** Feature1 ** ... ** FeatureM ** FeatureTypeName2 NumberOfFeatures(M) ** Feature1 ** ... ** FeatureM ** ... ** FeatureTypeNameN NumberOfFeatures(M) ** Feature1 ** ... ** FeatureM ** FontName CharName ... ** ** It then appends these samples into a separate file for each ** character. The name of the file is ** ** DirectoryName/FontName/CharName.FeatureTypeName ** ** The DirectoryName can be specified via a command ** line argument. If not specified, it defaults to the ** current directory. The format of the resulting files is: ** ** NumberOfFeatures(M) ** Feature1 ** ... ** FeatureM ** NumberOfFeatures(M) ** ... ** ** The output files each have a header which describes the ** type of feature which the file contains. This header is ** in the format required by the clusterer. A command line ** argument can also be used to specify that only the first ** N samples of each class should be used. ** Return: none ** Exceptions: none ** History: Fri Aug 18 08:56:17 1989, DSJ, Created. */ { char *PageName; FILE *TrainingPage; LIST CharList = NIL; CLUSTERER *Clusterer = NULL; LIST ProtoList = NIL; LIST NormProtoList = NIL; LIST pCharList; LABELEDLIST CharSample; ParseArguments (argc, argv); while ((PageName = GetNextFilename()) != NULL) { printf ("Reading %s ...\n", PageName); TrainingPage = Efopen (PageName, "r"); ReadTrainingSamples (TrainingPage, &CharList); fclose (TrainingPage); //WriteTrainingSamples (Directory, CharList); } printf("Clustering ...\n"); pCharList = CharList; iterate(pCharList) { //Cluster CharSample = (LABELEDLIST) first_node (pCharList); //printf ("\nClustering %s ...", CharSample->Label); Clusterer = SetUpForClustering(CharSample); float SavedMinSamples = Config.MinSamples; Config.MagicSamples = CharSample->SampleCount; while (Config.MinSamples > 0.001) { ProtoList = ClusterSamples(Clusterer, &Config); if (NumberOfProtos(ProtoList, 1, 0) > 0) break; else { Config.MinSamples *= 0.95; printf("0 significant protos for %s." " Retrying clustering with MinSamples = %f%%\n", CharSample->Label, Config.MinSamples); } } Config.MinSamples = SavedMinSamples; AddToNormProtosList(&NormProtoList, ProtoList, CharSample->Label); } FreeTrainingSamples (CharList); WriteNormProtos (Directory, NormProtoList, Clusterer); FreeClusterer(Clusterer); FreeProtoList(&ProtoList); FreeNormProtoList(NormProtoList); printf ("\n"); return 0; } // main /**---------------------------------------------------------------------------- Private Code ----------------------------------------------------------------------------**/ /*---------------------------------------------------------------------------*/ void ParseArguments( int argc, char **argv) /* ** Parameters: ** argc number of command line arguments to parse ** argv command line arguments ** Globals: ** ShowAllSamples flag controlling samples display ** ShowSignificantProtos flag controlling proto display ** ShowInsignificantProtos flag controlling proto display ** Config current clustering parameters ** tessoptarg, tessoptind defined by tessopt sys call ** Argc, Argv global copies of argc and argv ** Operation: ** This routine parses the command line arguments that were ** passed to the program. The legal arguments are: ** -d "turn off display of samples" ** -p "turn off significant protos" ** -n "turn off insignificant proto" ** -S [ spherical | elliptical | mixed | automatic ] ** -M MinSamples "min samples per prototype (%)" ** -B MaxIllegal "max illegal chars per cluster (%)" ** -I Independence "0 to 1" ** -C Confidence "1e-200 to 1.0" ** -D Directory ** -N MaxNumSamples ** -R RoundingAccuracy ** Return: none ** Exceptions: Illegal options terminate the program. ** History: 7/24/89, DSJ, Created. */ { int Option; int ParametersRead; BOOL8 Error; Error = FALSE; Argc = argc; Argv = argv; while (( Option = tessopt( argc, argv, "R:N:D:C:I:M:B:S:d:n:p" )) != EOF ) { switch ( Option ) { case 'n': sscanf(tessoptarg,"%d", &ParametersRead); ShowInsignificantProtos = ParametersRead; break; case 'p': sscanf(tessoptarg,"%d", &ParametersRead); ShowSignificantProtos = ParametersRead; break; case 'd': ShowAllSamples = FALSE; break; case 'C': ParametersRead = sscanf( tessoptarg, "%lf", &(Config.Confidence) ); if ( ParametersRead != 1 ) Error = TRUE; else if ( Config.Confidence > 1 ) Config.Confidence = 1; else if ( Config.Confidence < 0 ) Config.Confidence = 0; break; case 'I': ParametersRead = sscanf( tessoptarg, "%f", &(Config.Independence) ); if ( ParametersRead != 1 ) Error = TRUE; else if ( Config.Independence > 1 ) Config.Independence = 1; else if ( Config.Independence < 0 ) Config.Independence = 0; break; case 'M': ParametersRead = sscanf( tessoptarg, "%f", &(Config.MinSamples) ); if ( ParametersRead != 1 ) Error = TRUE; else if ( Config.MinSamples > 1 ) Config.MinSamples = 1; else if ( Config.MinSamples < 0 ) Config.MinSamples = 0; break; case 'B': ParametersRead = sscanf( tessoptarg, "%f", &(Config.MaxIllegal) ); if ( ParametersRead != 1 ) Error = TRUE; else if ( Config.MaxIllegal > 1 ) Config.MaxIllegal = 1; else if ( Config.MaxIllegal < 0 ) Config.MaxIllegal = 0; break; case 'R': ParametersRead = sscanf( tessoptarg, "%f", &RoundingAccuracy ); if ( ParametersRead != 1 ) Error = TRUE; else if ( RoundingAccuracy > 0.01 ) RoundingAccuracy = 0.01; else if ( RoundingAccuracy < 0.0 ) RoundingAccuracy = 0.0; break; case 'S': switch ( tessoptarg[0] ) { case 's': Config.ProtoStyle = spherical; break; case 'e': Config.ProtoStyle = elliptical; break; case 'm': Config.ProtoStyle = mixed; break; case 'a': Config.ProtoStyle = automatic; break; default: Error = TRUE; } break; case 'D': Directory = tessoptarg; break; case 'N': if (sscanf (tessoptarg, "%d", &MaxNumSamples) != 1 || MaxNumSamples <= 0) Error = TRUE; break; case '?': Error = TRUE; break; } if ( Error ) { fprintf (stderr, "usage: %s [-D] [-P] [-N]\n", argv[0] ); fprintf (stderr, "\t[-S ProtoStyle]\n"); fprintf (stderr, "\t[-M MinSamples] [-B MaxBad] [-I Independence] [-C Confidence]\n" ); fprintf (stderr, "\t[-d directory] [-n MaxNumSamples] [ TrainingPage ... ]\n"); exit (2); } } } /* ParseArguments */ /*---------------------------------------------------------------------------*/ char *GetNextFilename () /* ** Parameters: none ** Globals: ** tessoptind defined by tessopt sys call ** Argc, Argv global copies of argc and argv ** Operation: ** This routine returns the next command line argument. If ** there are no remaining command line arguments, it returns ** NULL. This routine should only be called after all option ** arguments have been parsed and removed with ParseArguments. ** Return: Next command line argument or NULL. ** Exceptions: none ** History: Fri Aug 18 09:34:12 1989, DSJ, Created. */ { if (tessoptind < Argc) return (Argv [tessoptind++]); else return (NULL); } /* GetNextFilename */ /*---------------------------------------------------------------------------*/ void ReadTrainingSamples ( FILE *File, LIST* TrainingSamples) /* ** Parameters: ** File open text file to read samples from ** Globals: none ** Operation: ** This routine reads training samples from a file and ** places them into a data structure which organizes the ** samples by FontName and CharName. It then returns this ** data structure. ** Return: none ** Exceptions: none ** History: Fri Aug 18 13:11:39 1989, DSJ, Created. ** Tue May 17 1998 simplifications to structure, illiminated ** font, and feature specification levels of structure. */ { char unichar[UNICHAR_LEN + 1]; LABELEDLIST CharSample; FEATURE_SET FeatureSamples; CHAR_DESC CharDesc; int Type, i; while (fscanf (File, "%s %s", FontName, unichar) == 2) { CharSample = FindList (*TrainingSamples, unichar); if (CharSample == NULL) { CharSample = NewLabeledList (unichar); *TrainingSamples = push (*TrainingSamples, CharSample); } CharDesc = ReadCharDescription (File); Type = ShortNameToFeatureType(PROGRAM_FEATURE_TYPE); FeatureSamples = CharDesc->FeatureSets[Type]; for (int feature = 0; feature < FeatureSamples->NumFeatures; ++feature) { FEATURE f = FeatureSamples->Features[feature]; for (int dim =0; dim < f->Type->NumParams; ++dim) f->Params[dim] += UniformRandomNumber(-MINSD, MINSD); } CharSample->List = push (CharSample->List, FeatureSamples); CharSample->SampleCount++; for (i = 0; i < CharDesc->NumFeatureSets; i++) if (Type != i) FreeFeatureSet(CharDesc->FeatureSets[i]); free (CharDesc); } } // ReadTrainingSamples /*---------------------------------------------------------------------------*/ LABELEDLIST FindList ( LIST List, char *Label) /* ** Parameters: ** List list to search ** Label label to search for ** Globals: none ** Operation: ** This routine searches thru a list of labeled lists to find ** a list with the specified label. If a matching labeled list ** cannot be found, NULL is returned. ** Return: Labeled list with the specified Label or NULL. ** Exceptions: none ** History: Fri Aug 18 15:57:41 1989, DSJ, Created. */ { LABELEDLIST LabeledList; iterate (List) { LabeledList = (LABELEDLIST) first_node (List); if (strcmp (LabeledList->Label, Label) == 0) return (LabeledList); } return (NULL); } /* FindList */ /*---------------------------------------------------------------------------*/ LABELEDLIST NewLabeledList ( char *Label) /* ** Parameters: ** Label label for new list ** Globals: none ** Operation: ** This routine allocates a new, empty labeled list and gives ** it the specified label. ** Return: New, empty labeled list. ** Exceptions: none ** History: Fri Aug 18 16:08:46 1989, DSJ, Created. */ { LABELEDLIST LabeledList; LabeledList = (LABELEDLIST) (char*)Emalloc (sizeof (LABELEDLISTNODE)); LabeledList->Label = (char*)Emalloc (strlen (Label)+1); strcpy (LabeledList->Label, Label); LabeledList->List = NIL; LabeledList->SampleCount = 0; return (LabeledList); } /* NewLabeledList */ /*---------------------------------------------------------------------------*/ void WriteTrainingSamples ( char *Directory, LIST CharList) /* ** Parameters: ** Directory directory to place sample files into ** FontList list of fonts used in the training samples ** Globals: ** MaxNumSamples max number of samples per class to write ** Operation: ** This routine writes the specified samples into files which ** are organized according to the font name and character name ** of the samples. ** Return: none ** Exceptions: none ** History: Fri Aug 18 16:17:06 1989, DSJ, Created. */ { LABELEDLIST CharSample; FEATURE_SET FeatureSet; LIST FeatureList; FILE *File; char Filename[MAXNAMESIZE]; int NumSamples; iterate (CharList) // iterate thru all of the fonts { CharSample = (LABELEDLIST) first_node (CharList); // construct the full pathname for the current samples file strcpy (Filename, ""); if (Directory != NULL) { strcat (Filename, Directory); strcat (Filename, "/"); } strcat (Filename, "Merged"); strcat (Filename, "/"); strcat (Filename, CharSample->Label); strcat (Filename, "."); strcat (Filename, PROGRAM_FEATURE_TYPE); printf ("\nWriting %s ...", Filename); /* if file does not exist, create a new one with an appropriate header; otherwise append samples to the existing file */ File = fopen (Filename, "r"); if (File == NULL) { File = Efopen (Filename, "w"); WriteOldParamDesc (File, FeatureDefs.FeatureDesc[ShortNameToFeatureType (PROGRAM_FEATURE_TYPE)]); } else { fclose (File); File = Efopen (Filename, "a"); } // append samples onto the file FeatureList = CharSample->List; NumSamples = 0; iterate (FeatureList) { //if (NumSamples >= MaxNumSamples) break; FeatureSet = (FEATURE_SET) first_node (FeatureList); WriteFeatureSet (File, FeatureSet); NumSamples++; } fclose (File); } } /* WriteTrainingSamples */ /*----------------------------------------------------------------------------*/ void WriteNormProtos ( char *Directory, LIST LabeledProtoList, CLUSTERER *Clusterer) /* ** Parameters: ** Directory directory to place sample files into ** Globals: ** MaxNumSamples max number of samples per class to write ** Operation: ** This routine writes the specified samples into files which ** are organized according to the font name and character name ** of the samples. ** Return: none ** Exceptions: none ** History: Fri Aug 18 16:17:06 1989, DSJ, Created. */ { FILE *File; char Filename[MAXNAMESIZE]; LABELEDLIST LabeledProto; int N; strcpy (Filename, ""); if (Directory != NULL) { strcat (Filename, Directory); strcat (Filename, "/"); } strcat (Filename, "normproto"); printf ("\nWriting %s ...", Filename); File = Efopen (Filename, "w"); fprintf(File,"%0d\n",Clusterer->SampleSize); WriteParamDesc(File,Clusterer->SampleSize,Clusterer->ParamDesc); iterate(LabeledProtoList) { LabeledProto = (LABELEDLIST) first_node (LabeledProtoList); N = NumberOfProtos(LabeledProto->List, ShowSignificantProtos, ShowInsignificantProtos); if (N < 1) { printf ("\nError! Not enough protos for %s: %d protos" " (%d significant protos" ", %d insignificant protos)\n", LabeledProto->Label, N, NumberOfProtos(LabeledProto->List, 1, 0), NumberOfProtos(LabeledProto->List, 0, 1)); exit(1); } fprintf(File, "\n%s %d\n", LabeledProto->Label, N); WriteProtos(File, Clusterer->SampleSize, LabeledProto->List, ShowSignificantProtos, ShowInsignificantProtos); } fclose (File); } // WriteNormProtos /*---------------------------------------------------------------------------*/ void FreeTrainingSamples ( LIST CharList) /* ** Parameters: ** FontList list of all fonts in document ** Globals: none ** Operation: ** This routine deallocates all of the space allocated to ** the specified list of training samples. ** Return: none ** Exceptions: none ** History: Fri Aug 18 17:44:27 1989, DSJ, Created. */ { LABELEDLIST CharSample; FEATURE_SET FeatureSet; LIST FeatureList; printf ("\nFreeTrainingSamples..."); iterate (CharList) /* iterate thru all of the fonts */ { CharSample = (LABELEDLIST) first_node (CharList); FeatureList = CharSample->List; iterate (FeatureList) /* iterate thru all of the classes */ { FeatureSet = (FEATURE_SET) first_node (FeatureList); FreeFeatureSet (FeatureSet); } FreeLabeledList (CharSample); } destroy (CharList); } /* FreeTrainingSamples */ /*-------------------------------------------------------------------------*/ void FreeNormProtoList ( LIST CharList) { LABELEDLIST CharSample; iterate (CharList) /* iterate thru all of the fonts */ { CharSample = (LABELEDLIST) first_node (CharList); FreeLabeledList (CharSample); } destroy (CharList); } // FreeNormProtoList /*---------------------------------------------------------------------------*/ void FreeLabeledList ( LABELEDLIST LabeledList) /* ** Parameters: ** LabeledList labeled list to be freed ** Globals: none ** Operation: ** This routine deallocates all of the memory consumed by ** a labeled list. It does not free any memory which may be ** consumed by the items in the list. ** Return: none ** Exceptions: none ** History: Fri Aug 18 17:52:45 1989, DSJ, Created. */ { destroy (LabeledList->List); free (LabeledList->Label); free (LabeledList); } /* FreeLabeledList */ /*---------------------------------------------------------------------------*/ CLUSTERER *SetUpForClustering( LABELEDLIST CharSample) /* ** Parameters: ** CharSample: LABELEDLIST that holds all the feature information for a ** given character. ** Globals: ** None ** Operation: ** This routine reads samples from a LABELEDLIST and enters ** those samples into a clusterer data structure. This ** data structure is then returned to the caller. ** Return: ** Pointer to new clusterer data structure. ** Exceptions: ** None ** History: ** 8/16/89, DSJ, Created. */ { uinT16 N; int i, j; FLOAT32 *Sample = NULL; CLUSTERER *Clusterer; inT32 CharID; LIST FeatureList = NULL; FEATURE_SET FeatureSet = NULL; FEATURE_DESC FeatureDesc = NULL; // PARAM_DESC* ParamDesc; FeatureDesc = FeatureDefs.FeatureDesc[ShortNameToFeatureType(PROGRAM_FEATURE_TYPE)]; N = FeatureDesc->NumParams; //ParamDesc = ConvertToPARAMDESC(FeatureDesc->ParamDesc, N); Clusterer = MakeClusterer(N,FeatureDesc->ParamDesc); // free(ParamDesc); FeatureList = CharSample->List; CharID = 0; iterate(FeatureList) { FeatureSet = (FEATURE_SET) first_node (FeatureList); for (i=0; i < FeatureSet->MaxNumFeatures; i++) { if (Sample == NULL) Sample = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32)); for (j=0; j < N; j++) if (RoundingAccuracy != 0.0) Sample[j] = round(FeatureSet->Features[i]->Params[j], RoundingAccuracy); else Sample[j] = FeatureSet->Features[i]->Params[j]; MakeSample (Clusterer, Sample, CharID); } CharID++; } if ( Sample != NULL ) free( Sample ); return( Clusterer ); } /* SetUpForClustering */ /*---------------------------------------------------------------------------*/ void AddToNormProtosList( LIST* NormProtoList, LIST ProtoList, char* CharName) { PROTOTYPE* Proto; LABELEDLIST LabeledProtoList; LabeledProtoList = NewLabeledList(CharName); iterate(ProtoList) { Proto = (PROTOTYPE *) first_node (ProtoList); LabeledProtoList->List = push(LabeledProtoList->List, Proto); } *NormProtoList = push(*NormProtoList, LabeledProtoList); } /*-------------------------------------------------------------------------*/ void WriteProtos( FILE *File, uinT16 N, LIST ProtoList, BOOL8 WriteSigProtos, BOOL8 WriteInsigProtos) { PROTOTYPE *Proto; // write prototypes iterate(ProtoList) { Proto = (PROTOTYPE *) first_node ( ProtoList ); if (( Proto->Significant && WriteSigProtos ) || ( ! Proto->Significant && WriteInsigProtos ) ) WritePrototype( File, N, Proto ); } } // WriteProtos /*---------------------------------------------------------------------------*/ int NumberOfProtos( LIST ProtoList, BOOL8 CountSigProtos, BOOL8 CountInsigProtos) { int N = 0; PROTOTYPE *Proto; iterate(ProtoList) { Proto = (PROTOTYPE *) first_node ( ProtoList ); if (( Proto->Significant && CountSigProtos ) || ( ! Proto->Significant && CountInsigProtos ) ) N++; } return(N); }