/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include #include #include #include "../internal.h" #include "internal.h" static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; // CRL score values // No unhandled critical extensions #define CRL_SCORE_NOCRITICAL 0x100 // certificate is within CRL scope #define CRL_SCORE_SCOPE 0x080 // CRL times valid #define CRL_SCORE_TIME 0x040 // Issuer name matches certificate #define CRL_SCORE_ISSUER_NAME 0x020 // If this score or above CRL is probably valid #define CRL_SCORE_VALID \ (CRL_SCORE_NOCRITICAL | CRL_SCORE_TIME | CRL_SCORE_SCOPE) // CRL issuer is certificate issuer #define CRL_SCORE_ISSUER_CERT 0x018 // CRL issuer is on certificate path #define CRL_SCORE_SAME_PATH 0x008 // CRL issuer matches CRL AKID #define CRL_SCORE_AKID 0x004 static int null_callback(int ok, X509_STORE_CTX *e); static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x); static int check_chain_extensions(X509_STORE_CTX *ctx); static int check_name_constraints(X509_STORE_CTX *ctx); static int check_id(X509_STORE_CTX *ctx); static int check_trust(X509_STORE_CTX *ctx); static int check_revocation(X509_STORE_CTX *ctx); static int check_cert(X509_STORE_CTX *ctx); static int check_policy(X509_STORE_CTX *ctx); static X509 *get_trusted_issuer(X509_STORE_CTX *ctx, X509 *x); static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, X509_CRL *crl, X509 *x); static int get_crl(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 *x); static int crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, int *pcrl_score); static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score); static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x); static int internal_verify(X509_STORE_CTX *ctx); static int null_callback(int ok, X509_STORE_CTX *e) { return ok; } // cert_self_signed checks if |x| is self-signed. If |x| is valid, it returns // one and sets |*out_is_self_signed| to the result. If |x| is invalid, it // returns zero. static int cert_self_signed(X509 *x, int *out_is_self_signed) { if (!x509v3_cache_extensions(x)) { return 0; } *out_is_self_signed = (x->ex_flags & EXFLAG_SS) != 0; return 1; } static int call_verify_cb(int ok, X509_STORE_CTX *ctx) { ok = ctx->verify_cb(ok, ctx); // Historically, callbacks returning values like -1 would be treated as a mix // of success or failure. Insert that callers check correctly. // // TODO(davidben): Also use this wrapper to constrain which errors may be // suppressed, and ensure all |verify_cb| calls remember to fill in an error. BSSL_CHECK(ok == 0 || ok == 1); return ok; } // Given a certificate try and find an exact match in the store static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x) { STACK_OF(X509) *certs; X509 *xtmp = NULL; size_t i; // Lookup all certs with matching subject name certs = X509_STORE_CTX_get1_certs(ctx, X509_get_subject_name(x)); if (certs == NULL) { return NULL; } // Look for exact match for (i = 0; i < sk_X509_num(certs); i++) { xtmp = sk_X509_value(certs, i); if (!X509_cmp(xtmp, x)) { break; } } if (i < sk_X509_num(certs)) { X509_up_ref(xtmp); } else { xtmp = NULL; } sk_X509_pop_free(certs, X509_free); return xtmp; } int X509_verify_cert(X509_STORE_CTX *ctx) { X509 *chain_ss = NULL; int bad_chain = 0; X509_VERIFY_PARAM *param = ctx->param; int i, ok = 0; int j, retry, trust; STACK_OF(X509) *sktmp = NULL; if (ctx->cert == NULL) { OPENSSL_PUT_ERROR(X509, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY); ctx->error = X509_V_ERR_INVALID_CALL; return 0; } if (ctx->chain != NULL) { // This X509_STORE_CTX has already been used to verify a cert. We // cannot do another one. OPENSSL_PUT_ERROR(X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); ctx->error = X509_V_ERR_INVALID_CALL; return 0; } if (ctx->param->flags & (X509_V_FLAG_EXTENDED_CRL_SUPPORT | X509_V_FLAG_USE_DELTAS)) { // We do not support indirect or delta CRLs. The flags still exist for // compatibility with bindings libraries, but to ensure we do not // inadvertently skip a CRL check that the caller expects, fail closed. OPENSSL_PUT_ERROR(X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); ctx->error = X509_V_ERR_INVALID_CALL; return 0; } // first we make sure the chain we are going to build is present and that // the first entry is in place ctx->chain = sk_X509_new_null(); if (ctx->chain == NULL || !sk_X509_push(ctx->chain, ctx->cert)) { ctx->error = X509_V_ERR_OUT_OF_MEM; goto end; } X509_up_ref(ctx->cert); ctx->last_untrusted = 1; // We use a temporary STACK so we can chop and hack at it. if (ctx->untrusted != NULL && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) { ctx->error = X509_V_ERR_OUT_OF_MEM; goto end; } int num = (int)sk_X509_num(ctx->chain); X509 *x = sk_X509_value(ctx->chain, num - 1); // |param->depth| does not include the leaf certificate or the trust anchor, // so the maximum size is 2 more. int max_chain = param->depth >= INT_MAX - 2 ? INT_MAX : param->depth + 2; for (;;) { if (num >= max_chain) { // FIXME: If this happens, we should take note of it and, if appropriate, // use the X509_V_ERR_CERT_CHAIN_TOO_LONG error code later. break; } int is_self_signed; if (!cert_self_signed(x, &is_self_signed)) { ctx->error = X509_V_ERR_INVALID_EXTENSION; goto end; } // If we are self signed, we break if (is_self_signed) { break; } // If asked see if we can find issuer in trusted store first if (ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) { X509 *issuer = get_trusted_issuer(ctx, x); if (issuer != NULL) { // Free the certificate. It will be picked up again later. X509_free(issuer); break; } } // If we were passed a cert chain, use it first if (sktmp != NULL) { X509 *issuer = find_issuer(ctx, sktmp, x); if (issuer != NULL) { if (!sk_X509_push(ctx->chain, issuer)) { ctx->error = X509_V_ERR_OUT_OF_MEM; goto end; } X509_up_ref(issuer); (void)sk_X509_delete_ptr(sktmp, issuer); ctx->last_untrusted++; x = issuer; num++; // reparse the full chain for the next one continue; } } break; } // Remember how many untrusted certs we have j = num; // at this point, chain should contain a list of untrusted certificates. // We now need to add at least one trusted one, if possible, otherwise we // complain. do { // Examine last certificate in chain and see if it is self signed. i = (int)sk_X509_num(ctx->chain); x = sk_X509_value(ctx->chain, i - 1); int is_self_signed; if (!cert_self_signed(x, &is_self_signed)) { ctx->error = X509_V_ERR_INVALID_EXTENSION; goto end; } if (is_self_signed) { // we have a self signed certificate if (sk_X509_num(ctx->chain) == 1) { // We have a single self signed certificate: see if we can // find it in the store. We must have an exact match to avoid // possible impersonation. X509 *issuer = get_trusted_issuer(ctx, x); if (issuer == NULL || X509_cmp(x, issuer) != 0) { X509_free(issuer); ctx->error = X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT; ctx->current_cert = x; ctx->error_depth = i - 1; bad_chain = 1; if (!call_verify_cb(0, ctx)) { goto end; } } else { // We have a match: replace certificate with store // version so we get any trust settings. X509_free(x); x = issuer; (void)sk_X509_set(ctx->chain, i - 1, x); ctx->last_untrusted = 0; } } else { // extract and save self signed certificate for later use chain_ss = sk_X509_pop(ctx->chain); ctx->last_untrusted--; num--; j--; x = sk_X509_value(ctx->chain, num - 1); } } // We now lookup certs from the certificate store for (;;) { if (num >= max_chain) { // FIXME: If this happens, we should take note of it and, if // appropriate, use the X509_V_ERR_CERT_CHAIN_TOO_LONG error code later. break; } if (!cert_self_signed(x, &is_self_signed)) { ctx->error = X509_V_ERR_INVALID_EXTENSION; goto end; } // If we are self signed, we break if (is_self_signed) { break; } X509 *issuer = get_trusted_issuer(ctx, x); if (issuer == NULL) { break; } x = issuer; if (!sk_X509_push(ctx->chain, x)) { X509_free(issuer); ctx->error = X509_V_ERR_OUT_OF_MEM; goto end; } num++; } // we now have our chain, lets check it... trust = check_trust(ctx); // If explicitly rejected error if (trust == X509_TRUST_REJECTED) { goto end; } // If it's not explicitly trusted then check if there is an alternative // chain that could be used. We only do this if we haven't already // checked via TRUSTED_FIRST and the user hasn't switched off alternate // chain checking retry = 0; if (trust != X509_TRUST_TRUSTED && !(ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) && !(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) { while (j-- > 1) { X509 *issuer = get_trusted_issuer(ctx, sk_X509_value(ctx->chain, j - 1)); // Check if we found an alternate chain if (issuer != NULL) { // Free up the found cert we'll add it again later X509_free(issuer); // Dump all the certs above this point - we've found an // alternate chain while (num > j) { X509_free(sk_X509_pop(ctx->chain)); num--; } ctx->last_untrusted = (int)sk_X509_num(ctx->chain); retry = 1; break; } } } } while (retry); // If not explicitly trusted then indicate error unless it's a single // self signed certificate in which case we've indicated an error already // and set bad_chain == 1 if (trust != X509_TRUST_TRUSTED && !bad_chain) { if (chain_ss == NULL || !x509_check_issued_with_callback(ctx, x, chain_ss)) { if (ctx->last_untrusted >= num) { ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY; } else { ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT; } ctx->current_cert = x; } else { if (!sk_X509_push(ctx->chain, chain_ss)) { ctx->error = X509_V_ERR_OUT_OF_MEM; goto end; } num++; ctx->last_untrusted = num; ctx->current_cert = chain_ss; ctx->error = X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN; chain_ss = NULL; } ctx->error_depth = num - 1; bad_chain = 1; if (!call_verify_cb(0, ctx)) { goto end; } } // We have the chain complete: now we need to check its purpose if (!check_chain_extensions(ctx) || // !check_id(ctx) || // We check revocation status after copying parameters because they may be // needed for CRL signature verification. !check_revocation(ctx) || // !internal_verify(ctx) || // !check_name_constraints(ctx) || // TODO(davidben): Does |check_policy| still need to be conditioned on // |!bad_chain|? DoS concerns have been resolved. (!bad_chain && !check_policy(ctx))) { goto end; } ok = 1; end: sk_X509_free(sktmp); X509_free(chain_ss); // Safety net, error returns must set ctx->error if (!ok && ctx->error == X509_V_OK) { ctx->error = X509_V_ERR_UNSPECIFIED; } return ok; } // Given a STACK_OF(X509) find the issuer of cert (if any) static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x) { size_t i; X509 *issuer; for (i = 0; i < sk_X509_num(sk); i++) { issuer = sk_X509_value(sk, i); if (x509_check_issued_with_callback(ctx, x, issuer)) { return issuer; } } return NULL; } // Given a possible certificate and issuer check them int x509_check_issued_with_callback(X509_STORE_CTX *ctx, X509 *x, X509 *issuer) { int ret; ret = X509_check_issued(issuer, x); if (ret == X509_V_OK) { return 1; } // If we haven't asked for issuer errors don't set ctx if (!(ctx->param->flags & X509_V_FLAG_CB_ISSUER_CHECK)) { return 0; } ctx->error = ret; ctx->current_cert = x; return call_verify_cb(0, ctx); } static X509 *get_trusted_issuer(X509_STORE_CTX *ctx, X509 *x) { X509 *issuer; if (ctx->trusted_stack != NULL) { // Ignore the store and use the configured stack instead. issuer = find_issuer(ctx, ctx->trusted_stack, x); if (issuer != NULL) { X509_up_ref(issuer); } return issuer; } if (!X509_STORE_CTX_get1_issuer(&issuer, ctx, x)) { return NULL; } return issuer; } // Check a certificate chains extensions for consistency with the supplied // purpose static int check_chain_extensions(X509_STORE_CTX *ctx) { int plen = 0; int purpose = ctx->param->purpose; // Check all untrusted certificates for (int i = 0; i < ctx->last_untrusted; i++) { X509 *x = sk_X509_value(ctx->chain, i); if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) && (x->ex_flags & EXFLAG_CRITICAL)) { ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION; ctx->error_depth = i; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } } int must_be_ca = i > 0; if (must_be_ca && !X509_check_ca(x)) { ctx->error = X509_V_ERR_INVALID_CA; ctx->error_depth = i; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } } if (ctx->param->purpose > 0 && X509_check_purpose(x, purpose, must_be_ca) != 1) { ctx->error = X509_V_ERR_INVALID_PURPOSE; ctx->error_depth = i; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } } // Check pathlen if not self issued if (i > 1 && !(x->ex_flags & EXFLAG_SI) && x->ex_pathlen != -1 && plen > x->ex_pathlen + 1) { ctx->error = X509_V_ERR_PATH_LENGTH_EXCEEDED; ctx->error_depth = i; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } } // Increment path length if not self issued if (!(x->ex_flags & EXFLAG_SI)) { plen++; } } return 1; } static int reject_dns_name_in_common_name(X509 *x509) { const X509_NAME *name = X509_get_subject_name(x509); int i = -1; for (;;) { i = X509_NAME_get_index_by_NID(name, NID_commonName, i); if (i == -1) { return X509_V_OK; } const X509_NAME_ENTRY *entry = X509_NAME_get_entry(name, i); const ASN1_STRING *common_name = X509_NAME_ENTRY_get_data(entry); unsigned char *idval; int idlen = ASN1_STRING_to_UTF8(&idval, common_name); if (idlen < 0) { return X509_V_ERR_OUT_OF_MEM; } // Only process attributes that look like host names. Note it is // important that this check be mirrored in |X509_check_host|. int looks_like_dns = x509v3_looks_like_dns_name(idval, (size_t)idlen); OPENSSL_free(idval); if (looks_like_dns) { return X509_V_ERR_NAME_CONSTRAINTS_WITHOUT_SANS; } } } static int check_name_constraints(X509_STORE_CTX *ctx) { int i, j, rv; int has_name_constraints = 0; // Check name constraints for all certificates for (i = (int)sk_X509_num(ctx->chain) - 1; i >= 0; i--) { X509 *x = sk_X509_value(ctx->chain, i); // Ignore self issued certs unless last in chain if (i && (x->ex_flags & EXFLAG_SI)) { continue; } // Check against constraints for all certificates higher in chain // including trust anchor. Trust anchor not strictly speaking needed // but if it includes constraints it is to be assumed it expects them // to be obeyed. for (j = (int)sk_X509_num(ctx->chain) - 1; j > i; j--) { NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc; if (nc) { has_name_constraints = 1; rv = NAME_CONSTRAINTS_check(x, nc); switch (rv) { case X509_V_OK: continue; case X509_V_ERR_OUT_OF_MEM: ctx->error = rv; return 0; default: ctx->error = rv; ctx->error_depth = i; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } break; } } } } // Name constraints do not match against the common name, but // |X509_check_host| still implements the legacy behavior where, on // certificates lacking a SAN list, DNS-like names in the common name are // checked instead. // // While we could apply the name constraints to the common name, name // constraints are rare enough that can hold such certificates to a higher // standard. Note this does not make "DNS-like" heuristic failures any // worse. A decorative common-name misidentified as a DNS name would fail // the name constraint anyway. X509 *leaf = sk_X509_value(ctx->chain, 0); if (has_name_constraints && leaf->altname == NULL) { rv = reject_dns_name_in_common_name(leaf); switch (rv) { case X509_V_OK: break; case X509_V_ERR_OUT_OF_MEM: ctx->error = rv; return 0; default: ctx->error = rv; ctx->error_depth = i; ctx->current_cert = leaf; if (!call_verify_cb(0, ctx)) { return 0; } break; } } return 1; } static int check_id_error(X509_STORE_CTX *ctx, int errcode) { ctx->error = errcode; ctx->current_cert = ctx->cert; ctx->error_depth = 0; return call_verify_cb(0, ctx); } static int check_hosts(X509 *x, X509_VERIFY_PARAM *param) { size_t i; size_t n = sk_OPENSSL_STRING_num(param->hosts); char *name; for (i = 0; i < n; ++i) { name = sk_OPENSSL_STRING_value(param->hosts, i); if (X509_check_host(x, name, strlen(name), param->hostflags, NULL) > 0) { return 1; } } return n == 0; } static int check_id(X509_STORE_CTX *ctx) { X509_VERIFY_PARAM *vpm = ctx->param; X509 *x = ctx->cert; if (vpm->poison) { if (!check_id_error(ctx, X509_V_ERR_INVALID_CALL)) { return 0; } } if (vpm->hosts && check_hosts(x, vpm) <= 0) { if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH)) { return 0; } } if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) { if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH)) { return 0; } } if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) { if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH)) { return 0; } } return 1; } static int check_trust(X509_STORE_CTX *ctx) { X509 *x = NULL; // Check all trusted certificates in chain for (size_t i = ctx->last_untrusted; i < sk_X509_num(ctx->chain); i++) { x = sk_X509_value(ctx->chain, i); int trust = X509_check_trust(x, ctx->param->trust, 0); // If explicitly trusted return trusted if (trust == X509_TRUST_TRUSTED) { return X509_TRUST_TRUSTED; } // If explicitly rejected notify callback and reject if not // overridden. if (trust == X509_TRUST_REJECTED) { ctx->error_depth = (int)i; ctx->current_cert = x; ctx->error = X509_V_ERR_CERT_REJECTED; if (!call_verify_cb(0, ctx)) { return X509_TRUST_REJECTED; } } } // If we accept partial chains and have at least one trusted certificate // return success. if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { X509 *mx; if (ctx->last_untrusted < (int)sk_X509_num(ctx->chain)) { return X509_TRUST_TRUSTED; } x = sk_X509_value(ctx->chain, 0); mx = lookup_cert_match(ctx, x); if (mx) { (void)sk_X509_set(ctx->chain, 0, mx); X509_free(x); ctx->last_untrusted = 0; return X509_TRUST_TRUSTED; } } // If no trusted certs in chain at all return untrusted and allow // standard (no issuer cert) etc errors to be indicated. return X509_TRUST_UNTRUSTED; } static int check_revocation(X509_STORE_CTX *ctx) { if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK)) { return 1; } int last; if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) { last = (int)sk_X509_num(ctx->chain) - 1; } else { last = 0; } for (int i = 0; i <= last; i++) { ctx->error_depth = i; if (!check_cert(ctx)) { return 0; } } return 1; } static int check_cert(X509_STORE_CTX *ctx) { X509_CRL *crl = NULL; int ok = 0, cnum = ctx->error_depth; X509 *x = sk_X509_value(ctx->chain, cnum); ctx->current_cert = x; ctx->current_crl_issuer = NULL; ctx->current_crl_score = 0; // Try to retrieve the relevant CRL. Note that |get_crl| sets // |current_crl_issuer| and |current_crl_score|, which |check_crl| then reads. // // TODO(davidben): Remove these callbacks. gRPC currently sets them, but // implements them incorrectly. It is not actually possible to implement // |get_crl| from outside the library. if (!ctx->get_crl(ctx, &crl, x)) { ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL; ok = call_verify_cb(0, ctx); goto err; } ctx->current_crl = crl; if (!ctx->check_crl(ctx, crl) || // !cert_crl(ctx, crl, x)) { goto err; } ok = 1; err: X509_CRL_free(crl); ctx->current_crl = NULL; return ok; } // Check CRL times against values in X509_STORE_CTX static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify) { if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) { return 1; } if (notify) { ctx->current_crl = crl; } int64_t ptime; if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) { ptime = ctx->param->check_time; } else { ptime = time(NULL); } int i = X509_cmp_time_posix(X509_CRL_get0_lastUpdate(crl), ptime); if (i == 0) { if (!notify) { return 0; } ctx->error = X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD; if (!call_verify_cb(0, ctx)) { return 0; } } if (i > 0) { if (!notify) { return 0; } ctx->error = X509_V_ERR_CRL_NOT_YET_VALID; if (!call_verify_cb(0, ctx)) { return 0; } } if (X509_CRL_get0_nextUpdate(crl)) { i = X509_cmp_time_posix(X509_CRL_get0_nextUpdate(crl), ptime); if (i == 0) { if (!notify) { return 0; } ctx->error = X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD; if (!call_verify_cb(0, ctx)) { return 0; } } if (i < 0) { if (!notify) { return 0; } ctx->error = X509_V_ERR_CRL_HAS_EXPIRED; if (!call_verify_cb(0, ctx)) { return 0; } } } if (notify) { ctx->current_crl = NULL; } return 1; } static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 **pissuer, int *pscore, STACK_OF(X509_CRL) *crls) { int crl_score, best_score = *pscore; X509 *x = ctx->current_cert; X509_CRL *best_crl = NULL; X509 *crl_issuer = NULL, *best_crl_issuer = NULL; for (size_t i = 0; i < sk_X509_CRL_num(crls); i++) { X509_CRL *crl = sk_X509_CRL_value(crls, i); crl_score = get_crl_score(ctx, &crl_issuer, crl, x); if (crl_score < best_score || crl_score == 0) { continue; } // If current CRL is equivalent use it if it is newer if (crl_score == best_score && best_crl != NULL) { int day, sec; if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl), X509_CRL_get0_lastUpdate(crl)) == 0) { continue; } // ASN1_TIME_diff never returns inconsistent signs for |day| // and |sec|. if (day <= 0 && sec <= 0) { continue; } } best_crl = crl; best_crl_issuer = crl_issuer; best_score = crl_score; } if (best_crl) { if (*pcrl) { X509_CRL_free(*pcrl); } *pcrl = best_crl; *pissuer = best_crl_issuer; *pscore = best_score; X509_CRL_up_ref(best_crl); } if (best_score >= CRL_SCORE_VALID) { return 1; } return 0; } // For a given CRL return how suitable it is for the supplied certificate // 'x'. The return value is a mask of several criteria. If the issuer is not // the certificate issuer this is returned in *pissuer. static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, X509_CRL *crl, X509 *x) { int crl_score = 0; // First see if we can reject CRL straight away // Invalid IDP cannot be processed if (crl->idp_flags & IDP_INVALID) { return 0; } // Reason codes and indirect CRLs are not supported. if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS)) { return 0; } // We do not support indirect CRLs, so the issuer names must match. if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) { return 0; } crl_score |= CRL_SCORE_ISSUER_NAME; if (!(crl->flags & EXFLAG_CRITICAL)) { crl_score |= CRL_SCORE_NOCRITICAL; } // Check expiry if (check_crl_time(ctx, crl, 0)) { crl_score |= CRL_SCORE_TIME; } // Check authority key ID and locate certificate issuer if (!crl_akid_check(ctx, crl, pissuer, &crl_score)) { // If we can't locate certificate issuer at this point forget it return 0; } // Check cert for matching CRL distribution points if (crl_crldp_check(x, crl, crl_score)) { crl_score |= CRL_SCORE_SCOPE; } return crl_score; } static int crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, int *pcrl_score) { X509 *crl_issuer = NULL; X509_NAME *cnm = X509_CRL_get_issuer(crl); int cidx = ctx->error_depth; if ((size_t)cidx != sk_X509_num(ctx->chain) - 1) { cidx++; } crl_issuer = sk_X509_value(ctx->chain, cidx); if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT; *pissuer = crl_issuer; return 1; } for (cidx++; cidx < (int)sk_X509_num(ctx->chain); cidx++) { crl_issuer = sk_X509_value(ctx->chain, cidx); if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) { continue; } if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH; *pissuer = crl_issuer; return 1; } } return 0; } // Check for match between two dist point names: three separate cases. 1. // Both are relative names and compare X509_NAME types. 2. One full, one // relative. Compare X509_NAME to GENERAL_NAMES. 3. Both are full names and // compare two GENERAL_NAMES. 4. One is NULL: automatic match. static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b) { X509_NAME *nm = NULL; GENERAL_NAMES *gens = NULL; GENERAL_NAME *gena, *genb; size_t i, j; if (!a || !b) { return 1; } if (a->type == 1) { if (!a->dpname) { return 0; } // Case 1: two X509_NAME if (b->type == 1) { if (!b->dpname) { return 0; } if (!X509_NAME_cmp(a->dpname, b->dpname)) { return 1; } else { return 0; } } // Case 2: set name and GENERAL_NAMES appropriately nm = a->dpname; gens = b->name.fullname; } else if (b->type == 1) { if (!b->dpname) { return 0; } // Case 2: set name and GENERAL_NAMES appropriately gens = a->name.fullname; nm = b->dpname; } // Handle case 2 with one GENERAL_NAMES and one X509_NAME if (nm) { for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { gena = sk_GENERAL_NAME_value(gens, i); if (gena->type != GEN_DIRNAME) { continue; } if (!X509_NAME_cmp(nm, gena->d.directoryName)) { return 1; } } return 0; } // Else case 3: two GENERAL_NAMES for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) { gena = sk_GENERAL_NAME_value(a->name.fullname, i); for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) { genb = sk_GENERAL_NAME_value(b->name.fullname, j); if (!GENERAL_NAME_cmp(gena, genb)) { return 1; } } } return 0; } // Check CRLDP and IDP static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score) { if (crl->idp_flags & IDP_ONLYATTR) { return 0; } if (x->ex_flags & EXFLAG_CA) { if (crl->idp_flags & IDP_ONLYUSER) { return 0; } } else { if (crl->idp_flags & IDP_ONLYCA) { return 0; } } for (size_t i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i); // Skip distribution points with a reasons field or a CRL issuer: // // We do not support CRLs partitioned by reason code. RFC 5280 requires CAs // include at least one DistributionPoint that covers all reasons. // // We also do not support indirect CRLs, and a CRL issuer can only match // indirect CRLs (RFC 5280, section 6.3.3, step b.1). // support. if (dp->reasons != NULL && dp->CRLissuer != NULL && (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint))) { return 1; } } // If the CRL does not specify an issuing distribution point, allow it to // match anything. // // TODO(davidben): Does this match RFC 5280? It's hard to follow because RFC // 5280 starts from distribution points, while this starts from CRLs. return !crl->idp || !crl->idp->distpoint; } // Retrieve CRL corresponding to current certificate. static int get_crl(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 *x) { X509 *issuer = NULL; int crl_score = 0; X509_CRL *crl = NULL; if (get_crl_sk(ctx, &crl, &issuer, &crl_score, ctx->crls)) { goto done; } // Lookup CRLs from store STACK_OF(X509_CRL) *skcrl = X509_STORE_CTX_get1_crls(ctx, X509_get_issuer_name(x)); // If no CRLs found and a near match from get_crl_sk use that if (!skcrl && crl) { goto done; } get_crl_sk(ctx, &crl, &issuer, &crl_score, skcrl); sk_X509_CRL_pop_free(skcrl, X509_CRL_free); done: // If we got any kind of CRL use it and return success if (crl) { ctx->current_crl_issuer = issuer; ctx->current_crl_score = crl_score; *pcrl = crl; return 1; } return 0; } // Check CRL validity static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl) { X509 *issuer = NULL; int cnum = ctx->error_depth; int chnum = (int)sk_X509_num(ctx->chain) - 1; // If we have an alternative CRL issuer cert use that. Otherwise, it is the // issuer of the current certificate. if (ctx->current_crl_issuer) { issuer = ctx->current_crl_issuer; } else if (cnum < chnum) { issuer = sk_X509_value(ctx->chain, cnum + 1); } else { issuer = sk_X509_value(ctx->chain, chnum); // If not self signed, can't check signature if (!x509_check_issued_with_callback(ctx, issuer, issuer)) { ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER; if (!call_verify_cb(0, ctx)) { return 0; } } } if (issuer) { // Check for cRLSign bit if keyUsage present if ((issuer->ex_flags & EXFLAG_KUSAGE) && !(issuer->ex_kusage & X509v3_KU_CRL_SIGN)) { ctx->error = X509_V_ERR_KEYUSAGE_NO_CRL_SIGN; if (!call_verify_cb(0, ctx)) { return 0; } } if (!(ctx->current_crl_score & CRL_SCORE_SCOPE)) { ctx->error = X509_V_ERR_DIFFERENT_CRL_SCOPE; if (!call_verify_cb(0, ctx)) { return 0; } } if (crl->idp_flags & IDP_INVALID) { ctx->error = X509_V_ERR_INVALID_EXTENSION; if (!call_verify_cb(0, ctx)) { return 0; } } if (!(ctx->current_crl_score & CRL_SCORE_TIME)) { if (!check_crl_time(ctx, crl, 1)) { return 0; } } // Attempt to get issuer certificate public key EVP_PKEY *ikey = X509_get0_pubkey(issuer); if (!ikey) { ctx->error = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY; if (!call_verify_cb(0, ctx)) { return 0; } } else { // Verify CRL signature if (X509_CRL_verify(crl, ikey) <= 0) { ctx->error = X509_V_ERR_CRL_SIGNATURE_FAILURE; if (!call_verify_cb(0, ctx)) { return 0; } } } } return 1; } // Check certificate against CRL static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x) { // The rules changed for this... previously if a CRL contained unhandled // critical extensions it could still be used to indicate a certificate // was revoked. This has since been changed since critical extension can // change the meaning of CRL entries. if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) && (crl->flags & EXFLAG_CRITICAL)) { ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION; if (!call_verify_cb(0, ctx)) { return 0; } } // Look for serial number of certificate in CRL. X509_REVOKED *rev; if (X509_CRL_get0_by_cert(crl, &rev, x)) { ctx->error = X509_V_ERR_CERT_REVOKED; if (!call_verify_cb(0, ctx)) { return 0; } } return 1; } static int check_policy(X509_STORE_CTX *ctx) { X509 *current_cert = NULL; int ret = X509_policy_check(ctx->chain, ctx->param->policies, ctx->param->flags, ¤t_cert); if (ret != X509_V_OK) { ctx->current_cert = current_cert; ctx->error = ret; if (ret == X509_V_ERR_OUT_OF_MEM) { return 0; } return call_verify_cb(0, ctx); } return 1; } static int check_cert_time(X509_STORE_CTX *ctx, X509 *x) { if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) { return 1; } int64_t ptime; if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) { ptime = ctx->param->check_time; } else { ptime = time(NULL); } int i = X509_cmp_time_posix(X509_get_notBefore(x), ptime); if (i == 0) { ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } } if (i > 0) { ctx->error = X509_V_ERR_CERT_NOT_YET_VALID; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } } i = X509_cmp_time_posix(X509_get_notAfter(x), ptime); if (i == 0) { ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } } if (i < 0) { ctx->error = X509_V_ERR_CERT_HAS_EXPIRED; ctx->current_cert = x; if (!call_verify_cb(0, ctx)) { return 0; } } return 1; } static int internal_verify(X509_STORE_CTX *ctx) { // TODO(davidben): This logic is incredibly confusing. Rewrite this: // // First, don't allow the verify callback to suppress // X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY, which will simplify the // signature check. Then replace jumping into the middle of the loop. It's // trying to ensure that all certificates see |check_cert_time|, then checking // the root's self signature when requested, but not breaking partial chains // in the process. int n = (int)sk_X509_num(ctx->chain); ctx->error_depth = n - 1; n--; X509 *xi = sk_X509_value(ctx->chain, n); X509 *xs; if (x509_check_issued_with_callback(ctx, xi, xi)) { xs = xi; } else { if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { xs = xi; goto check_cert; } if (n <= 0) { ctx->error = X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE; ctx->current_cert = xi; return call_verify_cb(0, ctx); } n--; ctx->error_depth = n; xs = sk_X509_value(ctx->chain, n); } // ctx->error=0; not needed while (n >= 0) { ctx->error_depth = n; // Skip signature check for self signed certificates unless // explicitly asked for. It doesn't add any security and just wastes // time. if (xs != xi || (ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)) { EVP_PKEY *pkey = X509_get0_pubkey(xi); if (pkey == NULL) { ctx->error = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY; ctx->current_cert = xi; if (!call_verify_cb(0, ctx)) { return 0; } } else if (X509_verify(xs, pkey) <= 0) { ctx->error = X509_V_ERR_CERT_SIGNATURE_FAILURE; ctx->current_cert = xs; if (!call_verify_cb(0, ctx)) { return 0; } } } check_cert: if (!check_cert_time(ctx, xs)) { return 0; } // The last error (if any) is still in the error value ctx->current_cert = xs; if (!call_verify_cb(1, ctx)) { return 0; } n--; if (n >= 0) { xi = xs; xs = sk_X509_value(ctx->chain, n); } } return 1; } int X509_cmp_current_time(const ASN1_TIME *ctm) { return X509_cmp_time_posix(ctm, time(NULL)); } int X509_cmp_time(const ASN1_TIME *ctm, const time_t *cmp_time) { int64_t compare_time = (cmp_time == NULL) ? time(NULL) : *cmp_time; return X509_cmp_time_posix(ctm, compare_time); } int X509_cmp_time_posix(const ASN1_TIME *ctm, int64_t cmp_time) { int64_t ctm_time; if (!ASN1_TIME_to_posix(ctm, &ctm_time)) { return 0; } // The return value 0 is reserved for errors. return (ctm_time - cmp_time <= 0) ? -1 : 1; } ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long offset_sec) { return X509_time_adj(s, offset_sec, NULL); } ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, const time_t *in_tm) { return X509_time_adj_ex(s, 0, offset_sec, in_tm); } ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s, int offset_day, long offset_sec, const time_t *in_tm) { int64_t t = 0; if (in_tm) { t = *in_tm; } else { t = time(NULL); } return ASN1_TIME_adj(s, t, offset_day, offset_sec); } int X509_STORE_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { // This function is (usually) called only once, by // SSL_get_ex_data_X509_STORE_CTX_idx (ssl/ssl_cert.c). int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, free_func)) { return -1; } return index; } int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data) { return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); } void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx) { return CRYPTO_get_ex_data(&ctx->ex_data, idx); } int X509_STORE_CTX_get_error(const X509_STORE_CTX *ctx) { return ctx->error; } void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err) { ctx->error = err; } int X509_STORE_CTX_get_error_depth(const X509_STORE_CTX *ctx) { return ctx->error_depth; } X509 *X509_STORE_CTX_get_current_cert(const X509_STORE_CTX *ctx) { return ctx->current_cert; } STACK_OF(X509) *X509_STORE_CTX_get_chain(const X509_STORE_CTX *ctx) { return ctx->chain; } STACK_OF(X509) *X509_STORE_CTX_get0_chain(const X509_STORE_CTX *ctx) { return ctx->chain; } STACK_OF(X509) *X509_STORE_CTX_get1_chain(const X509_STORE_CTX *ctx) { if (!ctx->chain) { return NULL; } return X509_chain_up_ref(ctx->chain); } X509_CRL *X509_STORE_CTX_get0_current_crl(const X509_STORE_CTX *ctx) { return ctx->current_crl; } X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(const X509_STORE_CTX *ctx) { // In OpenSSL, an |X509_STORE_CTX| sometimes has a parent context during CRL // path validation for indirect CRLs. We require the CRL to be issued // somewhere along the certificate path, so this is always NULL. return NULL; } void X509_STORE_CTX_set_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { ctx->untrusted = sk; } STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(const X509_STORE_CTX *ctx) { return ctx->untrusted; } void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk) { ctx->crls = sk; } int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose) { // If |purpose| is zero, this function historically silently did nothing. if (purpose == 0) { return 1; } const X509_PURPOSE *pobj = X509_PURPOSE_get0(purpose); if (pobj == NULL) { OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_PURPOSE_ID); return 0; } int trust = X509_PURPOSE_get_trust(pobj); if (!X509_STORE_CTX_set_trust(ctx, trust)) { return 0; } if (ctx->param->purpose == 0) { ctx->param->purpose = purpose; } return 1; } int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust) { // If |trust| is zero, this function historically silently did nothing. if (trust == 0) { return 1; } if (!X509_is_valid_trust_id(trust)) { OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_TRUST_ID); return 0; } if (ctx->param->trust == 0) { ctx->param->trust = trust; } return 1; } X509_STORE_CTX *X509_STORE_CTX_new(void) { return OPENSSL_zalloc(sizeof(X509_STORE_CTX)); } void X509_STORE_CTX_free(X509_STORE_CTX *ctx) { if (ctx == NULL) { return; } X509_STORE_CTX_cleanup(ctx); OPENSSL_free(ctx); } int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509, STACK_OF(X509) *chain) { X509_STORE_CTX_cleanup(ctx); ctx->ctx = store; ctx->cert = x509; ctx->untrusted = chain; CRYPTO_new_ex_data(&ctx->ex_data); if (store == NULL) { OPENSSL_PUT_ERROR(X509, ERR_R_PASSED_NULL_PARAMETER); goto err; } ctx->param = X509_VERIFY_PARAM_new(); if (!ctx->param) { goto err; } // Inherit callbacks and flags from X509_STORE. ctx->verify_cb = store->verify_cb; if (!X509_VERIFY_PARAM_inherit(ctx->param, store->param) || !X509_VERIFY_PARAM_inherit(ctx->param, X509_VERIFY_PARAM_lookup("default"))) { goto err; } if (store->verify_cb) { ctx->verify_cb = store->verify_cb; } else { ctx->verify_cb = null_callback; } if (store->get_crl) { ctx->get_crl = store->get_crl; } else { ctx->get_crl = get_crl; } if (store->check_crl) { ctx->check_crl = store->check_crl; } else { ctx->check_crl = check_crl; } return 1; err: CRYPTO_free_ex_data(&g_ex_data_class, ctx, &ctx->ex_data); if (ctx->param != NULL) { X509_VERIFY_PARAM_free(ctx->param); } OPENSSL_memset(ctx, 0, sizeof(X509_STORE_CTX)); return 0; } // Set alternative lookup method: just a STACK of trusted certificates. This // avoids X509_STORE nastiness where it isn't needed. void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { ctx->trusted_stack = sk; } void X509_STORE_CTX_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { X509_STORE_CTX_set0_trusted_stack(ctx, sk); } void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx) { CRYPTO_free_ex_data(&g_ex_data_class, ctx, &(ctx->ex_data)); X509_VERIFY_PARAM_free(ctx->param); sk_X509_pop_free(ctx->chain, X509_free); OPENSSL_memset(ctx, 0, sizeof(X509_STORE_CTX)); } void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth) { X509_VERIFY_PARAM_set_depth(ctx->param, depth); } void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags) { X509_VERIFY_PARAM_set_flags(ctx->param, flags); } void X509_STORE_CTX_set_time_posix(X509_STORE_CTX *ctx, unsigned long flags, int64_t t) { X509_VERIFY_PARAM_set_time_posix(ctx->param, t); } void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags, time_t t) { X509_STORE_CTX_set_time_posix(ctx, flags, t); } X509 *X509_STORE_CTX_get0_cert(const X509_STORE_CTX *ctx) { return ctx->cert; } void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx, int (*verify_cb)(int, X509_STORE_CTX *)) { ctx->verify_cb = verify_cb; } int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) { const X509_VERIFY_PARAM *param = X509_VERIFY_PARAM_lookup(name); if (!param) { return 0; } return X509_VERIFY_PARAM_inherit(ctx->param, param); } X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx) { return ctx->param; } void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param) { if (ctx->param) { X509_VERIFY_PARAM_free(ctx->param); } ctx->param = param; }