7.14.11. query¶
7.14.11.1. Summary¶
query
provides --match_columns
and --query
parameters of
select feature as function. You can specify
multiple query
functions in --filter
parameter in
select.
Because of such flexibility, you can control full text search behavior
by combination of multiple query
functions.
query
can be used in only --filter
in
select.
7.14.11.2. Syntax¶
query
requires two arguments - match_columns
and query_string
.
The parameter query_expander
or substitution_table
is optional.
query(match_columns, query_string)
query(match_columns, query_string, query_expander)
query(match_columns, query_string, substitution_table)
7.14.11.3. Usage¶
Here are a schema definition and sample data to show usage.
Sample schema:
Execution example:
table_create Documents TABLE_NO_KEY
# [[0, 1337566253.89858, 0.000355720520019531], true]
column_create Documents content COLUMN_SCALAR Text
# [[0, 1337566253.89858, 0.000355720520019531], true]
table_create Terms TABLE_PAT_KEY ShortText --default_tokenizer TokenBigram --normalizer NormalizerAuto
# [[0, 1337566253.89858, 0.000355720520019531], true]
column_create Terms documents_content_index COLUMN_INDEX|WITH_POSITION Documents content
# [[0, 1337566253.89858, 0.000355720520019531], true]
table_create Users TABLE_NO_KEY
# [[0, 1337566253.89858, 0.000355720520019531], true]
column_create Users name COLUMN_SCALAR ShortText
# [[0, 1337566253.89858, 0.000355720520019531], true]
column_create Users memo COLUMN_SCALAR ShortText
# [[0, 1337566253.89858, 0.000355720520019531], true]
table_create Lexicon TABLE_HASH_KEY ShortText \
--default_tokenizer TokenBigramSplitSymbolAlphaDigit \
--normalizer NormalizerAuto
# [[0, 1337566253.89858, 0.000355720520019531], true]
column_create Lexicon users_name COLUMN_INDEX|WITH_POSITION Users name
# [[0, 1337566253.89858, 0.000355720520019531], true]
column_create Lexicon users_memo COLUMN_INDEX|WITH_POSITION Users memo
# [[0, 1337566253.89858, 0.000355720520019531], true]
Sample data:
Execution example:
load --table Users
[
{"name": "Alice", "memo": "groonga user"},
{"name": "Alisa", "memo": "mroonga user"},
{"name": "Bob", "memo": "rroonga user"},
{"name": "Tom", "memo": "nroonga user"},
{"name": "Tobby", "memo": "groonga and mroonga user. mroonga is ..."},
]
# [[0, 1337566253.89858, 0.000355720520019531], 5]
Here is the simple usage of query
function which execute full text
search by keyword 'alice' without using --match_columns
and
--query
arguments in --filter
.
Execution example:
select Users --output_columns name,_score --filter 'query("name * 10", "alice")'
# [
# [
# 0,
# 1337566253.89858,
# 0.000355720520019531
# ],
# [
# [
# [
# 1
# ],
# [
# [
# "name",
# "ShortText"
# ],
# [
# "_score",
# "Int32"
# ]
# ],
# [
# "Alice",
# 10
# ]
# ]
# ]
# ]
When executing above query, the keyword 'alice' is weighted to the value - '10'.
Here are the contrasting examples with/without query
.
Execution example:
select Users --output_columns name,memo,_score --match_columns "memo * 10" --query "memo:@groonga OR memo:@mroonga OR memo:@user" --sortby -_score
# [
# [
# 0,
# 1337566253.89858,
# 0.000355720520019531
# ],
# [
# [
# [
# 5
# ],
# [
# [
# "name",
# "ShortText"
# ],
# [
# "memo",
# "ShortText"
# ],
# [
# "_score",
# "Int32"
# ]
# ],
# [
# "Tobby",
# "groonga and mroonga user. mroonga is ...",
# 4
# ],
# [
# "Alice",
# "groonga user",
# 2
# ],
# [
# "Alisa",
# "mroonga user",
# 2
# ],
# [
# "Bob",
# "rroonga user",
# 1
# ],
# [
# "Tom",
# "nroonga user",
# 1
# ]
# ]
# ]
# ]
In this case, the keywords 'groonga' and 'mroonga' and 'user' are given same weight value. You can't pass different weight value to each keyword in this way.
Execution example:
select Users --output_columns name,memo,_score --filter 'query("memo * 10", "groonga") || query("memo * 20", "mroonga") || query("memo * 1", "user")' --sortby -_score
# [
# [
# 0,
# 1337566253.89858,
# 0.000355720520019531
# ],
# [
# [
# [
# 5
# ],
# [
# [
# "name",
# "ShortText"
# ],
# [
# "memo",
# "ShortText"
# ],
# [
# "_score",
# "Int32"
# ]
# ],
# [
# "Tobby",
# "groonga and mroonga user. mroonga is ...",
# 51
# ],
# [
# "Alisa",
# "mroonga user",
# 21
# ],
# [
# "Alice",
# "groonga user",
# 11
# ],
# [
# "Tom",
# "nroonga user",
# 1
# ],
# [
# "Bob",
# "rroonga user",
# 1
# ]
# ]
# ]
# ]
On the other hand, by specifying multiple query
, the keywords
'groonga' and 'mroonga' and 'user' are given different value of weight.
As a result, you can control full text search result by giving different weight to the keywords on your purpose.
7.14.11.4. Parameters¶
7.14.11.4.1. Required parameter¶
There are two required parameter, match_columns
and query_string
.
7.14.11.4.1.1. match_columns
¶
Specifies the default target column for fulltext search by
query_string
parameter value. It is the same role as
match_columns parameter in select
.
7.14.11.4.1.2. query_string
¶
Specifies the search condition in
Query syntax. It is the same role as
query
parameter in select
.
See match_columns about query
parameter in
select
.
7.14.11.4.2. Optional parameter¶
There are some optional parameters.
7.14.11.4.2.1. query_expander
¶
Specifies the plugin name for query expansion.
There is one plugin bundled in official release - QueryExpanderTSV.
See QueryExpanderTSV about details.
7.14.11.4.2.2. substitution_table
¶
Specifies the substitution table and substitution column name
by following format such as ${TABLE}.${COLUMN}
for query expansion.
See query_expander about details.
7.14.11.5. Return value¶
query
returns whether any record is matched or not. If one or more
records are matched, it returns true
. Otherwise, it returns
false
.
7.14.11.6. TODO¶
- Support query_flags