// Copyright (C) 2009 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #include "../tester.h" #include <dlib/matrix.h> #ifndef DLIB_USE_BLAS #error "BLAS bindings must be used for this test to make any sense" #endif namespace dlib { namespace blas_bindings { // This is a little screwy. This function is used inside the BLAS // bindings to count how many times each of the BLAS functions get called. #ifdef DLIB_TEST_BLAS_BINDINGS int& counter_axpy() { static int counter = 0; return counter; } int& counter_scal() { static int counter = 0; return counter; } #endif } } namespace { using namespace test; using namespace std; // Declare the logger we will use in this test. The name of the logger // should start with "test." dlib::logger dlog("test.scal_axpy"); class blas_bindings_scal_axpy_tester : public tester { public: blas_bindings_scal_axpy_tester ( ) : tester ( "test_scal_axpy", // the command line argument name for this test "Run tests for DOT routines.", // the command line argument description 0 // the number of command line arguments for this test ) {} template <typename matrix_type, typename cv_type, typename rv_type> void test_scal_axpy_stuff( matrix_type& m, rv_type& rv, cv_type& cv ) const { using namespace dlib; using namespace dlib::blas_bindings; rv_type rv2 = rv; cv_type cv2 = cv; matrix_type m2 = m; typedef typename matrix_type::type scalar_type; scalar_type val; counter_scal() = 0; m = 5*m; DLIB_TEST(counter_scal() == 1); counter_scal() = 0; rv = 5*rv; DLIB_TEST(counter_scal() == 1); counter_scal() = 0; rv = 5*rv; DLIB_TEST(counter_scal() == 1); counter_axpy() = 0; m2 += 5*m; DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; rv2 += 5*rv; DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; rv2 += 5*rv; DLIB_TEST(counter_axpy() == 1); counter_scal() = 0; m = m*5; DLIB_TEST(counter_scal() == 1); counter_scal() = 0; rv = rv*5; DLIB_TEST(counter_scal() == 1); counter_scal() = 0; cv = cv*5; DLIB_TEST(counter_scal() == 1); counter_axpy() = 0; m2 += m*5; DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; rv2 += rv*5; DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; cv2 += cv*5; DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; m2 = m2 + m*5; DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; rv2 = rv2 + rv*5; DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; cv2 = cv2 + cv*5; DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; cv2 = 1; cv = 1; cv2 = 2*cv2 + cv*5; DLIB_TEST(counter_axpy() == 1); DLIB_TEST(max(abs(cv2 - 7)) == 0); counter_axpy() = 0; rv2 = 1; rv = 1; rv2 = 2*rv2 + rv*5; DLIB_TEST(counter_axpy() == 1); DLIB_TEST(max(abs(rv2 - 7)) == 0); counter_axpy() = 0; m2 = 1; m = 1; m2 = 2*m2 + m*5; DLIB_TEST(counter_axpy() == 1); DLIB_TEST(max(abs(m2 - 7)) == 0); if (is_same_type<typename matrix_type::layout_type, row_major_layout>::value) { counter_axpy() = 0; m2 = 1; m = 1; set_ptrm(&m2(0,0),m2.nr(),m2.nc()) = 2*m2 + m*5; DLIB_TEST(max(abs(m2 - 7)) == 0); DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; m2 = 1; m = 1; set_ptrm(&m2(0,0),m2.nr(),m2.nc()) = 2*mat(&m2(0,0),m2.nr(),m2.nc()) + mat(&m(0,0),m.nr(),m.nc())*5; DLIB_TEST(max(abs(m2 - 7)) == 0); DLIB_TEST(counter_axpy() == 1); counter_axpy() = 0; m2 = 1; m = 1; m2 = 2*mat(&m2(0,0),m2.nr(),m2.nc()) + mat(&m(0,0),m.nr(),m.nc())*5; DLIB_TEST(max(abs(m2 - 7)) == 0); DLIB_TEST(counter_axpy() == 1); } } void perform_test ( ) { using namespace dlib; typedef dlib::memory_manager<char>::kernel_1a mm; dlog << dlib::LINFO << "test double"; { matrix<double> m = randm(4,4); matrix<double,1,0> rv = randm(1,4); matrix<double,0,1> cv = randm(4,1); test_scal_axpy_stuff(m,rv,cv); } dlog << dlib::LINFO << "test float"; { matrix<float> m = matrix_cast<float>(randm(4,4)); matrix<float,1,0> rv = matrix_cast<float>(randm(1,4)); matrix<float,0,1> cv = matrix_cast<float>(randm(4,1)); test_scal_axpy_stuff(m,rv,cv); } dlog << dlib::LINFO << "test complex<double>"; { matrix<complex<double> > m = complex_matrix(randm(4,4), randm(4,4)); matrix<complex<double>,1,0> rv = complex_matrix(randm(1,4), randm(1,4)); matrix<complex<double>,0,1> cv = complex_matrix(randm(4,1), randm(4,1)); test_scal_axpy_stuff(m,rv,cv); } dlog << dlib::LINFO << "test complex<float>"; { matrix<complex<float> > m = matrix_cast<complex<float> >(complex_matrix(randm(4,4), randm(4,4))); matrix<complex<float>,1,0> rv = matrix_cast<complex<float> >(complex_matrix(randm(1,4), randm(1,4))); matrix<complex<float>,0,1> cv = matrix_cast<complex<float> >(complex_matrix(randm(4,1), randm(4,1))); test_scal_axpy_stuff(m,rv,cv); } dlog << dlib::LINFO << "test double, column major"; { matrix<double,0,0,mm,column_major_layout> m = randm(4,4); matrix<double,1,0,mm,column_major_layout> rv = randm(1,4); matrix<double,0,1,mm,column_major_layout> cv = randm(4,1); test_scal_axpy_stuff(m,rv,cv); } dlog << dlib::LINFO << "test float, column major"; { matrix<float,0,0,mm,column_major_layout> m = matrix_cast<float>(randm(4,4)); matrix<float,1,0,mm,column_major_layout> rv = matrix_cast<float>(randm(1,4)); matrix<float,0,1,mm,column_major_layout> cv = matrix_cast<float>(randm(4,1)); test_scal_axpy_stuff(m,rv,cv); } dlog << dlib::LINFO << "test complex<double>, column major"; { matrix<complex<double>,0,0,mm,column_major_layout > m = complex_matrix(randm(4,4), randm(4,4)); matrix<complex<double>,1,0,mm,column_major_layout> rv = complex_matrix(randm(1,4), randm(1,4)); matrix<complex<double>,0,1,mm,column_major_layout> cv = complex_matrix(randm(4,1), randm(4,1)); test_scal_axpy_stuff(m,rv,cv); } dlog << dlib::LINFO << "test complex<float>, column major"; { matrix<complex<float>,0,0,mm,column_major_layout > m = matrix_cast<complex<float> >(complex_matrix(randm(4,4), randm(4,4))); matrix<complex<float>,1,0,mm,column_major_layout> rv = matrix_cast<complex<float> >(complex_matrix(randm(1,4), randm(1,4))); matrix<complex<float>,0,1,mm,column_major_layout> cv = matrix_cast<complex<float> >(complex_matrix(randm(4,1), randm(4,1))); test_scal_axpy_stuff(m,rv,cv); } print_spinner(); } }; blas_bindings_scal_axpy_tester a; }