https://www.metanorma.org/ns/ieee false draft published draft published draft standard Draft IEEE Trial-Use Standard Guide Recommended Practice for rgb(57,82,164) rgb(0,176,240) 1.8 Calibri, STIX Two Math, 11pt true IEEE Std - # , IEEE P /D , IEEE SA Standards Board ( Revision of Incorporating and ) true 24pt P ™/D Developed by the   of the IEEE     Approved     Cutoff date   Expiration date abstract :   Keywords: , false true Developed by the of the IEEE Approved abstract :   Keywords: , true TRADEMARKS AND DISCLAIMERS IEEE believes the information in this publication is accurate as of its publication date; such information is subject to change without notice. IEEE is not responsible for any inadvertent errors. The ideas and proposals in this specification are the respective author’s views and do not represent the views of the affiliated organization. ACKNOWLEDGEMENTS Special thanks are given to the following reviewers of this paper: Firstname Lastname Firstname Lastname Firstname Lastname Firstname Lastname Firstname Lastname Firstname Lastname Firstname Lastname Firstname Lastname <!-- DEBUG contents= --> 12pt table_of_contents 4 12pt mm normal   10 12pt 6pt mm normal -mm true   TABLE OF CONTENTS 4.5mm 7.5mm 0mm 12pt 6pt 0pt 0pt mm normal   document-draft- document-nonstandard document-nonstandard document-standard document-standard page-index @orientation true 24pt Calibri Light 12pt   Calibri Light 9pt 1.2 8pt 12pt 11pt Arial Black 13pt 9999     0 justify 10pt Calibri Light 9pt Times New Roman 6pt 9pt index bibliography false false true false true false true false true true true true false preface annex 1 <xsl:apply-templates select="xalan:nodeset($title)" mode="contents_item"> <xsl:with-param name="mode">contents</xsl:with-param> </xsl:apply-templates> contents false <xsl:copy-of select="$name"/> 12pt bold Arial 12pt always true always sections always 1 foreword introduction sections annex bibliography px px true always always bold ISBN true 22.4pt 4.6pt 0mm 12pt 12pt 12pt 0mm 18pt 18pt 12pt 0mm 6pt 12pt 12pt Arial Black Arial 13pt 20pt 16pt 13pt 11pt 12pt inherit 12pt 11pt 10pt normal normal bold fo:inline fo:block always always H 8.5mm 13mm 17.8mm 10mm 20pt false false 57mm 3mm 11pt 11pt 11.5pt fo:inline fo:block 6pt 2pt ( , ) false fo:block justify 6pt 12pt 4pt 6pt 0pt 4pt 8pt 1.2 0 0pt 0 12pt inherit 6pt 0   7mm 6pt 4mm 0mm 1.3 6.2mm 6.5mm        inherit none inherit none none 1pt 51mm Copyright © . all_rights_reserved . 10.5mm    IEEE  CONFORMITY ASSESSMENT PROGRAM (ICAP) SA Arial 8.5mm Times New Roman normal This is an unapproved IEEE Standards Draft, subject to change. 000000 iVBORw0KGgoAAAANSUhEUgAAAOEAAADgCAMAAADCMfHtAAADAFBMVEUAAAD////09PT6+vr9/f37+/v5+fn39/f19fX8/Pz4+Pg3NzdtbW3u7u5ycnLi4uJgYGCoqKjR0dEhISGVlZW9vb2GhoY8PDyfn58WFhZMTEzHx8fX19d6enq0tLTf399DQ0MnJyeOjo4tLS1YWFi4uLhnZ2cLCwuBgYFKSkqkpKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKFF5xAAAACXBIWXMAAAsSAAALEgHS3X78AAAPmUlEQVR4nOVd63rjqg61bGwuqSdNmrRpk/Q2nbZ73v8BD/h+wRhsZHefrR/9xvMRYNkghFgSAQAPQw4QsgSAMgoQsRDUc1Q8J+q5LCQABGMAMQtJs1D2IxKyGIDlhVQlMZc/PJ9Pp+vt7e+gKb9vb6+n0/ksa+UxONfs0OegKh2q0qFsIgqz0qEszUJVOqyrDFUTqlAcZv1QhagqlP2IhKHqhypEOIf0eLi5C8bk7uZwTIFzYlmzaHbHos8B57EQMedCRJwnIuE8Us9x67kulKj/FNpC5XMkO5ge75++RsHV8vV0/5xKIJGx5rp5hz4H2WehCrLh5YXquXx5xPTyeMzD4/ebA7ha3r6Pofy96bOQeijZ9tknQjUL9oeHSehKeTjs1azyiZCTmNKYcEojQhIqCIko5cWzoEnxnBUiVD1nhRo/EtmPhIJ3/zgLXi6P9wqkqGqumxd585Q49Jn70jRA/MCrQMraPWka+Q/GLDRvUUir0xMId/MGZ18eTqFseXC1sO+zl3n4cvUML5fri5d5yKyXOC3COKbHDQo+JZsjjeMBhJZ9ZkGSRHEcJUnxJ86ek95zo1BUF+KQ7FyWPXf52iXA6+5E/e6M9TkYX+L6w6N6eeIvLr4M419RfxbbZbnR50kI8wkAsPOnPU3yuFMtOxkeTYTFEkdBLR9cLXnS6pILEag1hag1JibQLySrRh6fTfmSGBNTdwx9nqBp1LeksMfTLzrZ7GWn3DcAStNkn0PI9yGXOCZLM6pKq+eIyioIUwsRle9HvsRsHVRrDNl+LIpPyceWZEuc6rxDn+mUeSj4aXF8Sk5cLKNpYP97vDco8lsarO4II0cB+F4Jn5JvCcZRck1DR2dtOTxgP75rx5S7PfSXZVOfmatdus4MbMq7q10qS8k1RameUj+pNQXUGlPrIznw5RoDsH1dG5+U161Tn532h/u1wRWyd9ofkvx9EOP7IPJ9JHC/NrJK7mWnbPosvyGxn4f0aW1cDXmijvvDcb0E6dqgOpKCrS7V7rmi7n/CeW1EPTnDSJ+LZ0ubZv1Foi8nf1Ybiw9ro9HKIWY2CFnDfZbZ6Y0jkdxO53C7NpYBuVV7DW2fa8ccG98f0h8LUEGkVvvD2o/MW27s7FmQnwtQQiRC0+emf350fyh+8BdUcpuPv+mahvKfDVBC5HQEoVwzuHJI8sLXKMpnHiXi5yqZWqS6afW58JeWz4lR07B/AUAFkRk1jcku/fFDNJdbPrI/HJqHMfzMhb4vh9xBbdI02r3WjzTV9KIMOFumQk1CWM7Y/ur9w1nO0KYzWDEVFtgu/b7udi8v6u2Xsn152abH5+fn6/V658J3SJ2ZCoKi4crl6e85BbUZj1ou0My1wpMoB0zsjw6oGGQq6EYpJ/APIrrgQ5FngAwzdYrugD3Cf4Bw/Sgd0DSYPpnrtjxtH+NAOCAM7g1MBQ1CRC1zCgmxZXm4IJTaRo9QOw/xtMynGp72HAgnhkfqwFTwTR0p5e0C1JYDkRVyOqR8MDAV2qf8aJPwRg6fQX6B7j/dEMqpqKlEY7WhubZ3wKw5EBPmYaCc4Vb7Q5jGLByVs8l61C/LrgjfdAg7XgxCsc4H99D0NZCOr4E0uYGVQ8IVYfANvZp7mkYgjdG9JQdihqbJmhE9TcOUz7HhTSQ4Y3Rv8vkl6jnn2bEGGU92xxnhG+nW3J2HBGfLdIJJtF93hMGJmDUN3SLAk+u8HQdink1TyJYOMxXk8gEoPJkvxlX1zaby5vrP7UJTEH5Aq+YOUwFpKTxHFhyI+VZbIXswMBWmvLNxuYXJ3NwpCDdgYCrsvKNTsuXjfIIG+aw4dJ86D5XtNMxU8I0tk3uYzJGfOKa6+8P6G+J8wlRYcEJ8fkP5EZvfsJ6HnKIQRm/ncOSnbeO+KNcyFZD8oxdLPplHhNLAaOjSevURKJ/w1Zlq15Cpuv1L1CtibdPEOLPwrwOv05emkTMx1lhtSA7SdAJHfj7CgDb2h/negsLRJ65K3mI6zIFQOrTaW8Re9halHMuaG/tDHGb6PZ8VFjq5U5seUyF68YmrlnNcew8Me/wE9DLd6fcSdZkKOMFZQWzDxgZI/7xbhAy7yLWraUKv1VfyBuMIBTliHJKEDaaC2hfiLBXBDYzGX8EFx/98giKyK5+QWF7uwyhHkjzjtBw8QJOpEGE5gY98hOea4J0B7aMGUwEthuKcxa5WS1w9D4tYVgZ40SnfUGsaBlhhdi8jmib+i9SwlEfZSMlUiNFI+FtSny6T/GQ2eybFSS3BjE/ZxzVTAe3Ed4xvjmRn5HLfYCqgxYKOIcRSpJk8VkwFvEEagI6pU/MJsCypQvZxwVSI39HaAHNkCzI79z0udKkDa8VVwMyRR1wrlGxIzlSIkGxSJWPzEK/lTCQ25YkiOHvfTMbikfFazuRIFFNBYAaFwlAGoPwZG+E3CMVUwDq3VzI2D/FazkRt3gJMetDqCBWJKKAcc9UFQySH8rkjNp3JM6cB45gkvZU1jXKEBYxgRk6aI6rwET4RxVTATOCx9jz8UpoGle28NkKpagL4g9kADGcEyhxgmG1n8gcCRLM7yKy2VTWNNL4D/onZwMp2aRB8yt0Tap4L6EbNc3X2XJ1y4yO8k6MUtYGR/SE+QokPN3BEIWTDmQ8WQJgGuLE/q89DiQ9xcxisb7XJLWKAG4E3QlNYAOEhwA3BW92mkfhw/XnrI7wGuP68ksiVkRDaWdU4W2B/GEh88xE+Xn/d3Pz6Jf/cFH/q5zFN86n7Uf3sBeF8j+XDAMsgk3Z2Q8iyG0Iju6FZPCD04ZHdgBMZz4Ex9FOy/nQRTsoyqo0KuqwNrZANGBLVTspuWzzjnkw5yMaJjGedoTgKIySCiLM8OJHxHBi03Icu9SH5POwl9wl1WbcVUZeNZQqvHHOom3MH6WuaCZnTtUN6rSyiXdlAO7mP6AXcGbLfE13G/rwQiLWRlYI1D9lPWQ7REIofkwVvA5qbRCLHm0Q0dIafk+cPTdOgenJdBM0u9XQoNt9dijUP/TBCN8H8VbVvtblnTtcM6Zh58VX72AFLy9vm6iTeL2S84Cj2Q4K5DW5m14E0D4kfVt/Vg68NC6Gf3eHJg790A5wWlFF1KxKVA4zKAUeoei54pVQOwKJQ/pwVKn+UCErkKC0KFT/yFEp38uDzRtI0nrLFnT2cWyiEHi7a616H5ymj4TmYr7GQ5qGnXFxhQGbXYbTanBC2hrQnbzHxcAYsLW+rq5OGcwvp3FaRn73THQTznSEjVpvtvRLdD+4nQ8cvHszPZI1kl/o52DzEwfyaSi9GN7kPtNMG0ZYXgyqHRe3qgF6qI0+EwqMPThTO/pD7OfZTnKjZvLaNygrB1akZKCYCCHUCE6tnQjWhvaTpTax+lKU/iNSxDclr8rMcKl5byOempNnQdLtNU/lnW/ypn8fmofZH2R/qJcrlg4f/AX4prsNnbabCGaL/AM8bUJ3nKyP8DVnOPcxsrP2UMxX7awkm+z1kOff+j2NmziTLqRAxvCZW/oYiynMqEKyErGvPwwdeROdFeNy2dREeoiKnAuJtYxAV+77yrqL2MzLCF1LlVEBjQq+qae4aORXQTnlWZdC+VzkVmECj5oB5b4GL8CJYnVMBa5iuyWS/K3IqZJtqtGEKvdTAzSg9XITvkLkY8nmY4CRmXXcebpNmTnb+itPKilFBr1w0bgdES98Aw4y9BDmy67kgFJZ5oua7vrWyok1Dujn3cELW10P4Xd8OmLvxKM5Ofz2bJqVVxvLSUYkSDrwawqc6515JFcBxSIGZqYCH8AwlsDr3JbwiNLTWPHyF6vikRojCOV4L4S6qEVaEFoKRlWqlUXpHSMXUadz+gJFZcCVNs4Pm7Q8VQh75/4jrILxT3osKYfNo0r/pts48fB6+/cH7R1wF4V379oemPezfJbWK5b2HZkud2x9ePTe2xu5JroWG2x9874TX2AFvoX37Q/saIt9J8FbwYlyhxYEgnbvzfG8xVvBEpdU9M/XtgM1U4cTvsr+8N3FHytyvBbDe7YB+d1GLz8MnGL0d0O99SIvbNFuqvx2weV7i9ZqLpU9mTtBrSXd3nsdxurBNswGr2wE9keQzWRjhlmgQ6q6w8adPlz3l3jVqru7q0d9D6i2VxKKa5lZHIGTabwiRryx1S37Drwi031DPxvY1FZechy96Iu8AQl9TcUGEuwGqcjDEqfNjgi/H3LsONaXXNEofeCHZLKZpHoaicdjQ7fEUEh8ujaXs0rtkkCMfDFxDRFjkg76w1N7iEnX51fneonc7YEsf+PDaLLQ/VNdWDnHkO3v8VsyAB4UK5mgETwgzW2YgzoEMz0P5xudDXGQe7sAUq9L2tfX6MXfNWMLXdjXGGxVMhaH4qwhmhgmDObLLB8IbiIwxY0M2TTFrGcwL/MK3aX6pTpri/kYQytKzIKIj/DUa2RiwkVhWRuZAHIuSnQ2QsJH4WzZstZWzls0hvSFbbVdgYzHUGVNhJKY8humXMoE5Wn0mwr8Qj8bBi/F5KMf09HURdR7KddAiwtgKYTg5+x0mwotdDHVgl58DttOu+cBjKrxdwC6nyLimyWctDyd5p9A0zVPI7bI1GPaHPRtvSngUll16tY+htpyH2aoxIT4KaR4ey1XCWtNYxiOnznF8KPvDx61LDHXgknMMElcWKphrnoTwOwGXPGnl7sk2L4AjgxFhHp6L0HbLPrtoGpGPBKfUWd4RPqXghrDJVLDL3whwdHD5g7lmZ4TPAK45J500Tf7ySGq/LfaraW7UB3TN1lAxFRzyqFJysU0HAOaanRA+XgidkPvVdR7mi6ewDcr0OA8P2fhxz5pia7V10gYxsMtr481qu4bAwhZCyz5XTAXnnNQcthYJNcBcsy3Cjz2QqXm07a22XtoggMsop8GL1fZ0gRYZL3Tq8ySE1QTg+5Hv6AHhx57PyiKWn3KP5ffvFyqPxuFstABGah5H+HGG+sB6uDuGPk/QNO2FSEBq8FTN1DTXlAibhERGTdNkKgzds1G+RFYXqi84kv9Jd0MTcs4NHpuTqrq+OqnuDnPo8xBTwXIe1i/vRX/CMX0efl7Gl2UsTaMdHpykRw3IiQg/nlNCLJZlK4RmKoGDyB7Ex67amcJUeNqpMeKtXxNtGv3LU0N4f206Alw1zeP3MSy6M2kozfNEWQ2PSE7y9M9naZm72KWPn7stxCKaow4GmAqKk2W6/y3TT7SrxKhGieV0KyEbTf+8f3zZ3yz38P28VTujkZobKt26z/X+MN+JdM8Pq51IN+lqqD1OCstDnyiR/0rPwlwzyA/3fThuY4hVeaua++lczX3+H8X4ToXy2JncAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAAOEAAADhCAMAAAAJbSJIAAADAFBMVEUBAQH///8AAACKiooRERHMzMzp6enx8fF9fX2ioqIoKCiDg4OAgICQkJD29vaHh4e6urpsbGyqqqpUVFTb29vCwsJZWVnS0tJvb29DQ0MTExPY2NhlZWVgYGCdnZ0bGxtPT08uLi6Xl5c2NjawsLA6OjpBQUEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs9T06AAAACXBIWXMAAAsSAAALEgHS3X78AAAHAElEQVR4nO3deXeqPBAH4BB3rUtxqXZRa+37/T/iGxaRAslMhN7MpPn9dc+5VXkOSyAkExFBGW6P493hJOhEiv70/NyLByNw41WE8X83x7W8xbWrlPs2jVeLFsLh/JWYrJZk+9arB4WDM3FdngS5NB2uGuF2ysOXRm3q89BO+PbNh5dGGWc2wj0zXxJl1JyPdeGA0fFZjpQ7nHDJ05dEyjeE8MAXmBBjSDjqM/aJhDg2C4ecd2AW+WwSegBUxHe9cOQDUBH3WiHzc7CInGuEB0+AotL2F8KlL8CEOGwQDvw4CbPIaYPQJ6AiLmvCvVdAdZxuKsI3v3ahIn5WhN+eARXx+kO49Q6ojtMfwql/wvtOFGlL4XpzfiFSlIRnH4VCbguhF48U9chzIZx7CVTXmtFN+OqnUMhJLtx4ChTykAuP3grlIhOufRXmV1Ph2VNFObKXCofeAvMTUXh4T3pLdm8q7C40FN8I65O2iGKM3tiM9n1enw9MlPIlEe6QG6pE0/mgeGu+idf0jWmnm0B2Iko5vncMZBldqBvTFzXihNlIKT8aX5XPaBPlJREKxDZq369GL6SJae836g+lfhzAiPJ9e9rkY/7OAIyiBeYgcBSkUKbXXH0IP0BjhXMjMIomzIWyDwCj6JMqESkEho1FhLtbUcJ7z6ohVN+t4oRL0Ee3LwsnHCCEb4yFeV8HFKINBkr4igFGX4yFZ5TwnbHwAyXEP0b/03QofGIsXHu/D6egLgnRXmVca4ESMm4tROOw22qojvnDCY8I4YomECnEnIhUX5Mjn57MT/hJyD7lI4XwXQ3ROxp8L8YWANLtUUT3RAGPF3Q729C9id9GINXLjMALzaci9s2Oi6CFai/qDtTFf4SBFkJ1LjZfblZkLzJpLISKeK63iwPqk6RshInxc1J+f7E5noj7bIXZW+7d7BjHk8v4zOMtt6VQlAYqMOCJh4TMEoT8E4T8E4T8E4SO0uE9BTmhbEqrL8T2YsBp/5H0M19P8WB4exRdbAbx+KsVEtnXhkoHHxlvGx+zB73Tw0ikENElXHn1BI4xUrmUPyLlwTSmZTN70EhFqJ6uwZcjsXjE6FR4H16u6yGpGh8gOhXeBsPJapEHfexLHzkVXmUOhAeVFbGuGUBAWJ5Vjoht36V74W2KID7PdrNDXAvtgcnYeRLCHkpoHl2ti83AFsdCaHS1LhYHqlPhSqJGCDQFXwDCsbC5fhwiC3Sj4ViIGtbZGHSFBLfnoUVLXwu21oxToX07UQ7yOO1sNsIjwna5ei9EVmP5PSFmfH+74KZ4cBZGuGmTyH4a+OccCGPvhajLKW8hZuA1b+GL90LMYUpI+Hadj/fj+RUz5Frzo78rrDyV6quHN+ZlX+oJ36M7bhBNIg3h5lDu0Fb//kA+dCAeokgI5w2vdZC7EZ5ORkG4a9gRWCLcKUVA2FyUAznpEZ4D8XvCJyRQNwQe18MBFylzLtTfW+K64cBLjWuhYS4RbmInOIXctdA0QhzVWQzOmOtOOHtEaKzsm1aWgQLe1TgWGgf5yy/EN1xoC82TpVANBtgf5VYI7ABMpQPwztStEKjAlZfmNAbs++5OWKnJ37BQSD1AY4b5DrDJdyocAVuHaRFpC6Gtkyf4O8Cilk6F0DmE+VneQvEHhHCDyF0Iv38Lwg6FvSAMwiAMwiAMwiD8A8J5EAZhEAZhEAZhENaEiMlaQRiEQdixsPKmrL6+eRA6FWK614OQv/DovbCySol8D8IgDMIgDMIgDELMohhBGIRBGIRBGIRBGIRB2LEQHuj594SIyXX/UAj9FX8hSGQvhCfxMRamK4+DtWw4C5OpRQJc6oez8JoIwRJ2nIVJ7VfR81mYTOwXYLEevsJsmqboYnpObC8Ey8sgfhac/5aWuBLQnwn52gfyWmlxJPyRPtxItf+OrFdTwHc19gXWrQuWd/OztW+YZEKiK912kGwNVUF2EdHWycdYCItyoMySD+sRZJcrbp281rugu9Zty9wGAikh1RWZW+ZWBygRLn0UFrW0RUR30elWKW6sEqFlLXcWkcWC4qmQ7KLMj0euo7LQrlo9h5Qq2mdC7y6npfIqudCzNrE8KDYXkl642DqyXL/nJvTqOP1RAqgQGktv8crPMlqFEFddmUMqVbTuQl8ehaulM0tCP25tZLVKWFnoA7EG/Cl8YFksYqkDK8KGores0lS+tiKkvuK9MVJ+NfTPV4XRcMrVKJtr/dWEySM/R6JsOAV1wmjzyc4oNTtQI8xW1HK90RZRW7vWFq1tFiqjYINUG7ozFOTXCaNoe0a9QHGcZBtnxqLDemEUjSYH3GsiN8mXGoBWMTUJVRbb3gHzrsxJ+u8TxHIRgDDbly+r+DLvEcp8ct1ukGsoYIS8E4T88z8xdnvD1A4yegAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAAOEAAADhCAMAAAAJbSJIAAADAFBMVEX///8AAAAeHh7n5+fa2trh4eHq6ur4+Pj09PTw8PD7+/vd3d3Q0NCxsbG4uLjHx8dVVVW/v79wcHCXl5empqbT09MWFhZeXl4qKiqqqqolJSVBQUGRkZF3d3dNTU1+fn4vLy86OjpnZ2eJiYkaGhoMDAyVlZWenp4/Pz9ISEg2NjZra2sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAuS/AAAACXBIWXMAAAsSAAALEgHS3X78AAAIGElEQVR4nO2da5uyKhSGx0wzNc2y7Gint5pm/v//2zVTU5rIQliA1+b+mqcnBdYJ+PgwGAwGg8FgMBgMBoPBYDAY/rf4QRxFgxtREnf7qh9HLD0nzawy0+wU9lQ/mRB64Wb2Ju9OZx17qp+PF2dFlHcXOQpVPyMP4bBe3i/LBHxB+6RVA4bpu7Gd+5ALxpm1xH5oBuxvqL4bnzH1gtHyelwk4cmBjFn03RjV9znz7e2go6SnpxPsWAXWvp/+4/8aEA5YyW6eaQN9Vw7VV5usHwd0CM01tJZyJY6aCbSs4fuX6p4/n7+TXuHVnlhIlOgumwq8Pme3cCk/KdhCn4Q7Bj+nuvjS7rejDPEUnn2qF6+JvxX5PW5ryxE4mXIJtKz05zLBYP+v/EtGuKV7/P19JkViwCvQsvLxKdtW/UASkFKPECnw7Y8Xx5h00/zvkI6DLbD/hSdwSLqp+3LQAlsi2BBlZ0r8Aueww4SwwRNokX2s0t8aIAqMEAWSxvorpSOnXfKhnNgdPIFn8m275WOPEyyFezyBq5rbDt4PR4oaIH6jZYvcff0Qq4xgFC/SwxsJiwLd+bDQKiut4BRB4QpN4Osn2o9ubSF/vfGCepIYbH5rjcCzk+k/bNXXMa9/rD5tJDoWizYU3uNwXrj6+xwLreytK32Qi/WmsF7h5WaFueE4e3lTm8KdQ+K5C6EDI3PcCcYyiefrvDjO5sU7kxX+vX8R9KqbOwblaEVcd/ABFIaFkMjSZx3LzkOtQisXZYgjmjMl3gIZ9Qqtf2K+VJfQY4vn/XkpCq8dk4hhA9OpKFDhYdT1NL9sBZip5ZgYFlW22ARw3or3NXqIsYtXKgM1AeTMT06HCnQTfqpNTZd+4o01V0hcTjM8Ee4OHIo7NVECKg3zMGwQvfycfu4vw+Y9zgFT2R2yw8dw9++mscbGqSY4NZ9YRRSDzKGZw4EYJb1TlwKnD4iv/Fs10OhfkHQ9mNW7QYxX67Dni/0dhqwnQ8oTsRvFB0Z73OdLGNKgRlzm9Gu8sWbqV3uoCum+gd3oulkCN+X6iLFuawt4gIZZ9a8TtNNBVQipgWpucWQJqHAQVSExa/gCj3v6dYjpXyuqQlLuvgCfybE7TCjhHNQw1AiikG3Qr+BrE9cNST6me7ipufETATbHMZt3Sd+rz1EhRAWmkPsl/rL7nk8qu573Gm5xEErdyogL9s2yVeSUXyZm+h6YQ3LE3nU63JzjwP3rgM5iL1+gJr1dAMNHnS6z0SGN4onTxDCEMgcq9CqrqAQxxRwPwflqSFRRS+jl3w+Q0l/oMAQ68UMNKDDEjlxcPxULFm/ckZYgEsiUKabSxt5mS/XfCl6svEytMHKSsD+Gw9futn0S93SF17/hJeTCXWYumzVE4dW/G08eIh1M4wYBYm33Hw/HZrm6O7Fuu8ZFeizxJYJxzA+DrisnUyQMeuD2Tc42H7Vp6KebNJiOjQRm9EgftdpEby5UgeTaxHYAiCV6bTRGn0BiGJJKXZCAFKXJKlfCAZIcklZyhkEHIPDDU/2UPNDt7hvtstKKwIKlbf5MYWEoiSXYwgFm2k+qn7MxoOzoR9NSBR0Az+zBTA2hAo4GC848SWMGX2CppXYNbDT8AVgorBssRb14cwMxYSl39doUuHjAtiIUUx2tJtADiQUwyyWQYFw5oH3D/oJNYAsNcGAhzQutCgRfaTDFtV3j/qXJ7M9W9TbQSqECXpvc/WazW3rteYuQ0uBKJMzfEUPziWZt6VE5Zgu2IxkFqn0mEbbBCudb76HPtHKqEug1JhQi3QOM/EsEuXrbN/RCKADBWuPEIqNnSIK60LYyjsKWzesPwNOgpUKvg2Kgu8KcDdIQ0Ys7OifNWiTnKwxXUTwJnCvdSRhH6Xi9U62oDOfKjvrX13AZbFd6qgVQ4V6gS/dEFH9Hqnuxt4A11vQOZcCmG9ajd18jZE8WnYM1jSJsb2hcrrgTtF6lvuEoUescapulgVaX0MGc1cqDuNU4fT1HDEGO7w94S+JyAKjpZkDHQVHwOuP6TZoVvnizbkHTpfBt9Hx5i6qCQFgL39fKehNjrpXQKWHKUMLGQk+btrhF26pJl3o3xD0e9cgmojTCB6EGs4bEGdyV+Mrz3p/oW8LFn/SnQKSDubfPHW+OucAMDfjyLFwax8pyF9A1hLjppzslAtkrEJvTi7/le43fwnZngOEma7l54aGCfbn9brq5yGqUF2Ubj3uT6LzBt8slb/9axkb3H3eStg0lMED/UvG3m6zDxveO1Qqc43c1XyoFOhLCG0rboIyQ/07a9svvxDJWWcrVDRNdKSHGvZBEbxNcOXUaG8m26B+2pDoU1KBMDYEkfUeUHULpJLLi31u0jWzr6KfSVqnLFHSiXiQxti+/CbrJSGJ8piMn5vQkSIdSw0+ZVEPNGexlx2QwtiCupGcnp0x+6DAX7kp4jv3kp+R5Ekbpap2pWdxzLN6M6ek0KSbH2bA+1GUpVq5d+Wrx9Sgo2WAO8rJs6RpyxOzuD47aTP1M4K7RRAJ1ZTMLWUNgV03BbGcs0ZN35A8d07NkL6IvN1m/mCsIVHhnaUUXQ0Vu/IefSPEE10q8+AfowZhFqjZhdiPCmxg7O+DYn8zYc4yvdbGW7cHXYqdiY2u7Q6gsjE2kl4gaJPNUbS63ju5gz+dizbIU27Lmxg+SZiUJx+GGvCGidnh2NGbYEmL7vYps/dodAG8SzTf7y6xTzWKZbc6Rhl2KwWAwGAwGg8FgMBgMBoPBgMh/Q+SmslhKidgAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAANwAAAEACAIAAABXs482AAAACXBIWXMAALiNAAC4jQEesVnLAAAVWUlEQVR4nO2dWZMbVZbH897MVGpXSbXve+GFpXEZwoMZcIOhm/BEzzBuJujgY8zDTMQ89SeZfqEDhmhegO6eNgSeoME2xgs2BXaVXbtrUZVUVdpzn4eb9yqhy8ZulMqrrPN7+kulUmZKf+U5efLee5Bt28IDMU2T6XK5zF6vqSrTlmX9yLsABwAkCBhjRyMUUhSmY7EYe5koig9+H+lHt5Tb3mbme+/3v69Wq0RfvXatVqsRvbOzYxiOdy3LEgSw6MEBMSNKkphOp4kOh8PHjh0jOhKJvPGb3zivRqiru/vB74i92VEA+PvZ/0xZLpWY/t8//dHQdaIvffmlqmpE31u7ZxgG0bWaalsW0TacJg8YSECOwLhKg6ckSSa1hBJSYvE40bIsv/7rX7P/Zc+72d+UNRqjBUG4dOGCSrc08+13OjVotVr90XwUOGiU6OkMIVQoFImWZTmihIhWFOW1M2fY6/c1JYRvgDvAlAB31MO3OxZ/cu6cRR/Ozd1hIbtWq1k0UQCAB8NsY5rmnfl5omU5dO4vfyEaIfRv9KqcPCRif1Ne+OILZr6l5RV2QQNJJPCQ2LbNTCkIwvLKKhGSJF34/HOiMcZvvPkmew0zJYRvgDvAlAB3OOHbsqx33n6bPfvdrVs2vXFomiZEbeAnwixkmuatW7eJRhi5XffmW2+Rm0OIvNowjLfeeIP9+cq162BEwGsQQtNP/4w9fPu99yRJEiB8AxwCpgS4Q8rncqZpGrq+sZllz0LsBpqAbdsbm5vsYXZzU5blRDIp5ba3dV03DGMzm33A/wOAF7hdt721JUmSLMsQvgHuAFMC3CGtLq9Uq1XTNOCmNtB83K5bWlyURDGVSkkry8vFQsE0TfdcHABoDqZZN+Xi/LwoiqPj4xC+Ae4AUwLcIS0tL+3k8zZMkQX8Zn5hASP0zIkT0sL8fDabhWo54Dtzs7MIoUKhAOEb4A4wJcAdkm4Yuq5D+AZ8R9d1hJBlWZKu65qmgSkB31FVFSFkmiaEb4A7wJQAd0iWZcFdb4AHbIpkW5ZlWZBTAr5jmiaZ+g3hG+AOMCXAHWBKgDvAlAB3gCkB7gBTAtwBpgS4A0wJcAeYEuAOMCXAHWBKgDvAlAB3gCkB7gBTAtzx411sWwVZlpVQvddaIpEgOhQKxWmvNVEUQ+Ew0e4+wA1E01SmC4UiGxOYy22zcavFYolpwzBg3OAPaHlTsuYrkXA4k3H6+nZ0dIyPjROdTqfHxsaIVsLhTEcH0RhjWW784e/k80zP3Z5l5vvqq8ua5vRavXP3rqY5PWZKrhbqAAHCN8AdYEqAO1ovfCOE6iE7EonHYkR3d3ePjY0SnWlvHx4ZIToRj/f29hItyaE4zTURQpIkNnz3FEVhwdgWBLZIk6prrJsgFiVVdVLP+YV5pms1FeZLCa1oSoyRKDpm6uxoHx0ZJvro44+/cOrnRKfa2nr7+4mWJElRlObvpyAITzz1FNOPP/UkWwF04Pz5aqVC9IcffLC7u0v0RnaL5Z0HGQjfAHeAKQHuaJnwzfLIRCLR1tZG9NjY6JEjR4geGR1NZzJER6NR0lBN8KYY+XcQjkRYvjg0PMzyyMcOHSrs7RGt6UaxVCS6VlMP7ILfrWFKhOsXN/39/UepEZ+enn7h1Cmio9FoMpXyZfcehgz9wQiC8PyLLzIdj8VKpRLR5UplfW2N6LX1jepBNSUXZxEAcAOmBLiD3/CtKCFZlonu6+/vobXGkeHhsVGnHtk/MKDQe9kSfXFrkc5kItEo0cemp/P00Ga+mdmjuebG5maFlpAOAvyaMpVMptPOBc2/nj37T7/6FdHxeJwVwAPA1OHDTD/59NNM/+Gdd1ZXVoj+4MOPFpeWiD4IN8ohfAPcAaYEuIOv8M3qPoIgtKXTg4MDRGcyGXarUJT42meP6OntZaXWTHt7no6Iq1Sruq77t1/NgK8v2D3Y4vBjh06ePEn0kSNH064630HguRdeYOnjNzMzpuEYcXFxaZdeAAUVCN8Ad4ApAe7gK3yHw0oo5OSOmY727p4eomPxmH875Rssk2nv6BgYcNLrzezWXqFAdFDLQ3yZsrOzo5POoTk2Pf38z0/5ujt+4r7me+b48ZGhIaLXNzay2SzRQV2sHsI3wB1gSoA7/A/fkiSyIY8DA4PjE87U2ExHu387xReJZNKkYzH7+vryOadmubW9zYa9BQn/TRmLRsN0UMXrZ8/+8+uvE+1Oqg447vvjhb29I/ThR3/808zMDNFBSi4hfAPcAaYEuMP/8B0ORxIJZ62fEF0MCLgf0ViMTVEKhxU22zhIPTb9N2V/Xx+rDGfSGU7meXHL2Ph4V3c30V9cvDg3O0d0tVYLzJxxcADAHWBKgDv8D9+RaDSZShIth1pynk0zkUMhVkFTQvVpTGpQYrfglyndNciR0dHp49NEd3Z2+rI/LUQ7HRsgCEJXd1d7u7Mkp2EYtVrNp51qMBC+Ae4AUwLc4U/4liQRY6fAFotFE0maU3owd1vTtFKxyHSRatu2vSjsRSIRpnv7+lii4sWhRSLRFF2pZmcnOHMk/DFlW6otGnW+vCNHjx5/9lmiWQrfQDbX1z87f57o1dXVc+fOEW2aphdJ2NHDh5kR/+u3v2VH1NnV1fAS7NTklG046w3Vap9kt7Ya+/5+AeEb4A4wJcAd/oRv9xLRWBQx1Y0armZZlkkXGK9UKrlcjujd3T12L860LLYIeQMplcvsKPK5HJuu3t7R0fDwLUkSGy3APs8A4I8pw+EIa7gUi8djsQbPC6tWq/ntbaJv3rjxzrvvEq2q6s7ObmO39QPyO1eZ/sO7/8Oub/79P/+j4UsgpTPp/gFnafeGf4Y+AuEb4A4wJcAdvt1mxDTx8mLSg65pRTo5ulKusNzRNJs64rBcLrPwbZomK4s2KrkURZGtyokCNOTPH1OGZJkV8LzI0NfX1s79+c9E37l7d3s71/BN3A/3XJlLl79kFz2FYpEZKBqNNuSSLplKsd9bJBp58ItbiOD8vIDAAKYEuMOn8ZTI2xm0lmWxvtuGf6s5GobB0kfLlVPatt2Qw8cYs9U6MQrO+cWvARkSG8/rxaScQqEwOztLdHZru+Hv/5DkcvXe36VSiRXSo3Tl/Z9IIplkeWo4AjklAHgGmBLgDv/n6HgBxogVCL1o6v2QuKtdGOGGJyoIIfaeGGNRpPmrZbf0Ki7BNGUykZycnCIaY+n61zd92Y1MOs0uaOKJeIze7m+UO0OKwt4qlUpm0s58nVK5XK228HwdCN8Ad4ApAe4IZvgWJYnNlQkpIZZs2bbQzAV3FEVht/gxxg0vzSLXCFRZlsO05FSrqY3dUJMJpin7+vpefe01otPt7ZcuXSJaVbWdXW/HU7qd99w/nGDXW8lUqlHlSUZIUWQ6yPfQoUMl2l/n2vXrt247ZdpWvOKB8A1wB5gS4I5ghm+EMasRKuFwhrbQq6mqO5jZQuNDmyTWP9J4IiHX7017u1q2oihshkkq1cYO2bIsy94njbYt26bptWEYGh0h4NF0+EcimKaMxetFweGxsX85e5boUrG4tLBItHvQRgMZHBpiaWVHV5en407crSx/eebML8+cIbpULFZp0/rd3d3Cfr0cC3t7eTrMdGZm5tPznxJdLldy+fzfvr6ZQPgGuANMCXBHMMP3fUH1+eYIIcmD1uFe1CMfFfc9cVEU9z1MWZbZnPGQEmLD6jTN/2biB8uU8Xj80NEjfu+F57hT6vaHWPLz8BNPDA+PEP31jRvvv/8+0X5d9ED4BrgDTAlwx8EK38C+YIzrw0/FeqtMvwqWYEpAGB0fGxkbJTqVSV+8eIHocqWSzfqw5iWEb4A7wJQAd0D4Bn4Iqi/z5E/BFUwJfO8eejweHxp0WmVubec2s9nm7w+Eb4A7wJQAd4ApgR9g30c3D8gpge9hC4JFp/X4Nb0HzpQAd4ApAe4AUwLcAaYEuANMCXAHmBLgDjAlwB1gSoA7wJQAd4ApAe4AUwLcAaYEuANMCXAHmBLgDjAlwB1gSoA7wJQAd4ApAe4AUwLcEfw5OvdWVi5+/rmj19b+7/x5ok3TrKn8NkEKKwpb3/X55/+xt7eX6JMvvjA4NOTffjWD4JvSsiyVmq9WrRYKBaJN06zV+O2qqYXDzJTVapUdgmWa/u1Uk4DwDXAHmBLgjmCG70qlskubwVy9cuW/f/c7oqvVqnvBRZ77FrpX8//oow/D4TDRqUya9WNsS6cb3u+RB4JpStu2TZp76bpeoZ2OVFU1WzAnq6kq+/3ous4Ogecf1U8BwjfAHWBKgDuCGb7XVlY+/fhjomfn5ra2tolu0XhXKBRZgnnpiws7287hnDp9euqxx/zaK+8IpikN06xWq0S3aB7pxt2lQVVVdmimYfi0R94C4RvgDjAlwB3+hG/btm3Lw/SuUCjMzt4memNz07sNNZ/1tXuW6UTtEydPNn4DtsC+Gr9S8GDmlJZlaZpGtGG0dkL5AwzD0Omh+dURzGsgfAPcAaYEuMOf8G2apkHLGV7EoEQiMTExSTQWpW9mvm34Jvyip7d3bNTpo5hMJBr+/pZl6brTh970KfPxKae0vU2iRYxDdNSCLMnebaj5SJLEDg3TAZeNhX01tk/dISB8A9wBpgS4w5/wrek6m4rgxT3Ant7el155hei2zJXLX11m2y0Uig3fnNckE3FZdkL29PHj08ePE91DJ+40EPcsEY0ml03Gt+J5vYOQB+8vy3KCXgREo1FJcg7TNFuysIdFUZKc9DEajbJDk+XGp8vf+2p8Kp5D+Aa4A0wJcIc/4Tu/ky+VS0SvLC0tzc8TnensTDSi9haNxwcUxXnPjo7pZ58lulwqrS6vEG3Z9YIch8iyjJFzyugfGozH40R3dHSweTlSg8J3qVjMbTlTl1aWl++trRHNbtU2GX9MabgGAqqq2vBJzRjjEDVlSFHa0mmiS8WiJDqHbFmWpvG7GEEopGDsmHJ4dCTuQZ2cYZom+wpUVXUNG/BnvCaEb4A7wJQAd/gTvlVV0zQnn9tYX1+gOWU0Fku1tXm33Ug0OjY54TywBdvmt0KEEBboxBx2X9EjioXC4sIC0RsbG9WqU6c8WOMpbdtmB6xpGqvWGh5PphFFMRKJeLqJVsRdMNc1zfdhmhC+Ae4AUwLc4Vv4ZnpxYQHRR/2DgyN0sCDQNLa3t69fvUr04sKi77Pj/Z+jU63U14zUNX6r2QFG1zT2FdTopHIfgfANcAeYEuAO/8P37Nzc4vIy0b0D/Sad1Dw6Pt4/MODffgWctdXV+bt3ib544cJnf3WWhVc5WAfef1OWymWhXCY6n8vl6OpNvX19/u1U8KnVavlcjuhcLpeja8zyAIRvgDvAlAB3+B++3dz67rsKHWeZamsbn5z0d38CzPLy8ifnzjl6ZcX32qQbvkxZKBY26XpUbKFywAsqlQr7qFmRkhMgfAPcAaYEuIOv8L21tb2358zLvnrlSjLuzAEYHhsdHB72b78Cwsry8hIdN3ntypU7d51hrCpn00L4MmWtpqqqM0Ekv53b3NgguqOry7+dCg6VUilLP9JcLlcoOr9/rq5yBAjfAIeAKQHu4Ct8u6dJXPzyy9tzc0RPTU1NTIwT/bNjx6afeYZoSZLYkiwAwzAMNjv26uWvrl+7RvSdO3du33aWgt/Z2fF92sP94OsbdSc3m5ubrJBm6Hqt4twf7+npYWtisZnRgBvLsthHtLGxPnPzJtHzCwuz9HfOM/ClAtwBpgS4g6/wfT82NjeKJad+IcpyiQ51m5iYePzJJ4kOhUKRIDa/fkgqlYpGh0J+c+Pm3TtOmL58+avrN24QXS6V/Nm5R6Q1TFmuVCp07sjKykpbKkV0PB5nHTPFg51fGobBxudurK/P3nIuaFaWl7fo4lW81SPvx4H+IgE+AVMC3NEa4du2bLawzr3VexWaU25tbd1bcdabHBoefuKpp4iORqPpTIZoURRlj9fiaSa6prFyz04+zwb43fz666XFRaJnZr6dp8sz7e7usnpkq4Tv1jCl4PpAC8VifailLdj0Ezcta2BwkGjLNBPJJPvfIDXScffFKhWLe3t7RC/Mz383M+PoxcW1tXWiDdNsFS8yIHwD3AGmBLijZcI3w7Isncaj7NZWmYby5dV7V+lNXiWkxOIxoiVJUuhS0wgh0ZvWcZ5iukKwqqosfJdLZTYUciu7VaChvFwu6/Q1LRe7hVY0pXvQRqlcZoX0zWx2jt7YxRizxjOiKCohxfV8/ZARErjF7SXDMNjFiqqp7ELHMExuB1X8FCB8A9wBpgS4o/XC98Ng27ZBe1WbplXvW41QK452syyLhXPTsmy/29R5TWBN6f7CvOhJCnhH6502gMADpgS4A0wJcAeYEuAOMCXAHWBKgDuwbQsBrXYBrQdxI2YPAMBfmAkhfAPcAaYEuENCiOsRXMDBgVgRIThTAvwBpgS4A0wJcIeEMG7FIYZA8BBFESGEEJIwxhjjoA4XBVoIjDFCSEAIzpEAd4ApAe6QMum0qeu2ba+s3vN7Z4ADTUd7O8Y4rChSKpk0NM2CnBLwm3RbG8ZYCYUgfAPcAaYEuEPq6uoKhUKBXP0DaC16+vpEjCPRqNTR2amEwzAzGvCdrq4uURTDkQiEb4A7wJQAd0hDw8PVatUwTffCjRDNgeYgivXT4vDoqCRJiXhcGhga0nXdMAz3sAwwJdAc3K4bHhmRJCkWj0P4BrgDTAlwh5Rub7dM0zTNl19+iT378ccfs8FspgklTKCRsDwSIXT69Gn2fFdXlyhJ4UhEymQygiBYlvXqK6+wP58/f56V08GUQGNhl9QY41dffZU939XTQ1JMCN8Ad4ApAe5wlpdGCE3QHsWCIIyNjrLwPTd3x4Q740CDwBiPjY4xPTE1xf6E6AIEdVMePnqU/XlyYpKZ8u78ghX0ld8Br2GGE0VxanKSaIzxoSNH/vY1EL4B7gBTAtzh7glXX1LoxHPP2bYTvm/dvqVpOtEbm5ssrBuGAdEcuB8IIdZxEGPc091NtByST5w86TyPENpvIav9TfnyK/WS5l8/+0yt1Yje3dvTdcegrG0lAOyLLMtMTIw7FzdKOHz6F/Xa5L6mhPANcAeYEuCO/dvghSMRpk+99BKL1JOHD7NRbTv5vEXvQGq6FviGgcD9YCEYIRSSQ0RjEaczGaJFURwaHCRakqRwOPwjb/hIHnLPL1tdXjZoflkqldifLFdHSyDwIFcPVoxxPB4nWpLlgaEh9rJHWkQNwjfAHY92pnRjGAZbz/97C2zAafKg4bqCxky7SkKPyv8DIBBA+NkT6ScAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAAKkAAACSCAIAAACxCn0WAAAACXBIWXMAAAsSAAALEgHS3X78AAAdFElEQVR4nO1dbUwcxxmeu73vg7PNVwSxW2NsbMt8GFsyMiC1RyqDIoWmcoMEsRQlF6tEqYTUxgYpqRsllpqjai0qt0E1NGpDgmTqpkFqekYKTiSfldhxiI0tUvyFZAurkMPm4Lgv9rY/xt6u553dm7vbOw5zzy+Ye3Z33nl3Z+edZ+ZdjSAIPM/Pzc1pNBokQVZWll6vR49idnaWoJnNZpPJRNDu3btHlBgMBqvVShR6vV6e56UlHMfZbDaC5vP5gsGg9LqCIOTk5BC0QCCwuLhI0NasWcNxnJQGjaXSELOxkJagsaFQiChct24dUUI1FrZJOByen5+XM1YnLUUMUJfGCKJxiX8xoPPkCpVPrgCWsyUOoukUqpegLzRzc3MIIZvNJr0rOY7z+XzEfQppCKFwOEzcpzzP22w22EzhcJjn+VAoFAwGcYnFYoEP5eLiInGg0Wg0GAxE4fz8PAttcXGRqLBOpzObzQTN7/cvLS0RhdnZ2USJtPKx0pSNxZXnOA72tTzPe71e6bE8z+MeiHCZ1+slDsQ9kBxNx/M8Pi/0FvQ9pGGPEgTMmZmZuXbt2q1btyYmJs6fP3/v3r3FxcXFxcX79+/D06oCjUbD8igsC00Za9eutVgsFotl3bp1e/bsKS0tLS4u3rJlS35+vtieYjuLl4M3k/RfOZrI1CGVwHGcwWC4e/fuV199dfHixY8++mhiYkKtkz/28Hg84t8ul0v8u7S09Cc/+cnu3burq6sLCgpwx8n4kopK08zOziY46OB5PhgMut3ugYGBgYEBlmplEAdaWlpaWlpqa2uNRiPHcYkPsRP1/b17906cONHR0RGHMRnEB6fTefDgQaoviBJl32sVrqH8GgsEAl1dXTk5ORnHpxgdHR05OTldXV2BQCC+M2DPaubm5qgdCO7MiUKz2azVajmOO336dGNjY3wXzkBFDA0NPfPMM9hTPp+P+FXZsxpxbodgZGdnw3jD5/Pdvn371VdfHRkZUdOCDBJAfX39H//4xw0bNsDuHc/tEIXi3I4mpnm9wcHB5uZm9mpVV1f/8Ic/LC4uLi0t3bhxo8lkstlsYhXhFALHcdCAQCAARx5wgMLzPLzxIQ0hRMTB7DSr1QrjJUgzGAzwaVM21ufzLS4uLiwsTE5OTkxM3Lp167PPPvvyyy9hreRw8uTJ5557Dj2M33A9lef1YvB9Z2en0+lkqUdbW9uzzz5bUVGxbt06sSqwOVSf5vT7/VFpeKqEKKRORi3LBLb0Vev1ei9fvvzPf/6zp6cHMaCjo+Odd95BCIlzNsq+VxrrieB5/qmnnorq+OrqapfLJQjCsWPH9u7dazKZ/H5/KBQKhULUaSJ2EKNOuUEopFGvy3i2+OqWIHAEj2Eymerq6o4dO7a0tORyuaqrq5WPdTqdTz31lOj4qIju+0AgsHXrVuUXfH19vdvt/uKLLxoaGhBCfr8/QWdngBEKhfx+P8dxDQ0NX3zxhdvtrq+vV+CPjIxs3bpVHP8reyGKluPz+bKyspTr53K5sMulUF3yie+Eck/AsghX8dGkPXZNTc2nn36qHGTduHHDbDYvLCyI7x1ZLWdhYQEhZDKZIpGI9Afc+ezYsePOnTtyl+no6PjVr37FcZz0/sJKA8HkeZ64B6k0hBBUhgwGg16vJ6qHnwZpCRZCpDStVkuNgKGxcDxBpVGtsFqtLDR2Y+H9imliZ24wGHief/PNNxXewuvXr7969So8m7RNdMFgUKfTiYKBtB779u1TcDx+3KlCMgwQEEKQhqcKiItCqd5sNsPqzc/PS9tXEASj0WgymQga0biCIFCNJV5SgiBoNBo4qscCHVE9eLYEjYWtJ47XcCWDwaDFYnnnnXfsdrtcB3Dnzp19+/Z9+umncHAq3ppauRn/n//853IxRm5u7tTUFOznlcEuk6sIorkTV0HU0lFUQUNDw9TUVG5uLvXXL7/8sr29XeFwcqyH74jBwcG+vj7qAeXl5Tdv3iwsLBRLlsWpGWAUFhbevHmzvLyc+mtfX9/g4KDcsaTvOY67deuW3AROdXX1+fPnqTMhGSwL8EqZixcvykWAzc3Nt27dov5EifF+/OMfU6m5ubnDw8Pw/ZHsVVws4aJGo2EMahmXdsnRWKzgeV7doJ+AtKPF9dTr9cPDw3Kdv5xDSd/39vaOjY1RqRcuXKA+8SyL6ZJNSw14nk+9sfCiVI7NZrtw4QL117GxsQ8++ACBp+iROd379+9v2rSJevzIyIjdbp+dnSXKLRYLdZqTuPGNRiN1mpNYJafT6eTW6RKFcut0o9KowpXcOl2ihGospKlrrEajkVunSxTm5OScOXNGbvLn5s2ba9eupc/pms3mrq4u6mFHjx612+1iVaSg8pNNU3iMCI7c+4JgEgF6aqxIBs1utx89epTK7+rqIuYYtOKJJicnqZrB+vXrX3/9dbkapAbxzeezn1yrZdI10gpyxr7++uvr16+H5T09PZOTkzrd/2dyH9hsNpvlxKJ//etfCdczg5RCzmU9PT3SZewPfH/37t3u7m7IdjgcFRUVyahfBslDRUWFw+GA5d3d3Xfv3hX/1SKEOI4bHh6mnuXIkSNEifAo5C6vLk3KVOAQJ0SKWk5MF02lsYx1Q4ptAh2HMTw8LLaJxu/36/X6qqoqGNq1tLR8+OGHeDFMarYjZZAgRL3HZDK1trbCJfPl5eWjo6PhcBjhtZpXrlypra2FJ3K73WVlZeJMhSaWYIMoUV44Jq06jjal9zJ15SBeVCOlUSMrvKhGSqNGVjAAoxrLGG3GZCxBYzRWLrRGD43V6XTKbl1aWtJyHHf27FnIyMvL27Vr14MFnSkMXQhygrQHC9PSIwCLylSgoRjbhOf5Xbt25eXlQcKZM2c4jtNoNFqO44aGhiDj0KFDmbU3Kxo8zx86dAiW//vf/34wtzM9Pe12uyGjqakp4/sVDZ7nm5qaYLnb7Z6enuY4Tjs+Pk49csuWLenge9x9sdBSo+WwXCLZ7Ra12xersWXLFupP2OnayclJ+BveZiUAUE+kboQDmSxxmiCzJBcPVFNMw3IfYWwKok0BAD10JQHsdN0333wDfysvL+c4Do5gqfIGpFG1HEijyhuQ5vP5pMNmPOKlajnS6mEadXQNrWDXcljaRF1jkYxwBY2FNIQQdVnH+Pi4zWbTURXboqIiuWXejB1OUmnKA+xYTygIQiQSoeYxSAdjE6HxPF9UVATLv/rqK4SQ9ttvv4W/bdy4UU7aWhYINC2HWA5rMpmkQkVMgFpO+s9lKb8jRGzcuBEWfvvtt+FwWCvN+CCioKAgwZqlAHiB7OXLl1tbWzUaTWtr65UrV6hLoVctIpEI1ZUej8fv99O1y3QY4bPg3LlzlZWVeOZyYGCgtrb2zTffFARBVKvS//FNNuRcGQwGKb6nqr8iWAac8dEULopkdItf/OIXBM3pdObm5p49e9ZsNiu8EVUcXcdHY7yoAg0x61tyDqW8IJ988kmz2Uy9X4xGIyzEwoAUMNcZx3GQRt3VQKXB64bDYa1WK7eDoLGx0eFw/OY3v4En5Hmeeja4t4bRWEhLhrGwJiw0vB/oySefhHts/H4/xfc6nU6v14dCIRaRJhAIQN1CdXmDukpOeWTX19fX19d38uTJp59+mud5Mb5KUMtRXbgiaHLGEiUWi4UqXMHQWm4IvLi4qLRWSQPAQmM8G+N1FTgKZxDR3Nz8wgsveDwei8WSSpFGXWPjo0VtopW3Ti1WnDp1atOmTf39/dRtjqsZj7/vMQ4ePNjQ0DA5OYmDwJUSyCQVq8X3CCG3211ZWXns2DEEYr9EdCCIlXJjRcmvxxK9qBsIIbYgJ2pgI4eOjo6KigpiNhOKNNRjGWlULUfBEBXbhP26iBrjLS0tBQIBarIoak6pNWvWRKVxHAdp1BR+VBpMokRVXxBC+fn5OTk5//nPf+BPIsbGxrZv397R0dHR0YHzGOC8gVGtSMRYavI7dmOJknA4DK8LaZFIJBAIwBThmEwPk7CQAxt3aWlJ86gKQh1AwYTO1LPB/BRUmtwJqTUPhULY8VVVVaOjo1QOhtPp7O3t/eCDD+rq6mBiBMRsLKQxWoFkXiIsNJi+nNomkUhE4QWU0PueMdBipCkgjh5+dHR0w4YN+fn5ChyPx9PY2Nje3g4fSoiUGcuIuN96Ih7nsd7t27dnZmZ27typTOvr61uzZs3p06dTU6v0wePse4xvvvnGaDRSpUwpGhsbW1tbZ2Zm8L8rZayeCBLyfeLdTuJnYEEwGJycnNyxY4cybWBgoKCgAG9Vh+/OlBmbmjZBct/N4B79SMf/2bSZYRWHMES6NoXrsmePFHH16lWtVrt161a55akYBw4c+Mtf/tLb27t+/Xo45FaxTWIyNm6aXCuFw2G6lmMymdgzHkBBgipvsGQ8iGmrShyrdCKRyPj4+NatW5WDwJGRkU2bNvX09PzsZz+TlrNrOaobS5RYLBaoSMllgVilWg4V2PGVlZXKtLa2toqKisuXL8vVLd20HEZ/iXj8x3pyuHTp0oYNG5Q5Y2NjlZWVv/71r8Vs4Cl7GacAq9f3CKHbt28jhKqqqpRpb7311hNPPHHu3LlEloOmIVa17zFGR0elqSKp8Hg8tbW1L7/8ss/ng6uSVihYv5WUuKyibm+p7tlwNoqoHUBfX19RUdEnn3yCU/wqSz4qVi8+xKnlhMNhjuPg1z6pggQLDdG+HUpNcg1pOKM3pKmeIGl0dNRoNObn5ytkkEYINTc3NzU19fb25ufnBwIBxjZhNBZ/NSEqjad9IAZmu+d5nrrWDyFksVjob69QKIQzlxPl8AMcFosF0nBedinNaDRCGsxejZcKwsrAfNNwtZoqCAaDd+7c2bFjx9WrVxVoQ0NDBQUF/f39zz//PPExFOFhRm/iEHZjoe+hsdQc3NQ2CYVCVB1Pr9enkZaTMhUkKrDjN2/erEw7cOBAXV3d1NQUXgskPMxOwnKJdDA2M9aTxfXr17dv367Mcbvd27dv/8Mf/mAwGFZcCJDxvRLGx8e1Wm1ZWZkyraOjo7KycsXtCMv4PgoikciVK1ei9v83btyAO8LiQ8pihJXhe+LtmPqX5fXr1xFDEOh0OktLS6m5q9gR34ghjjahazlWq5VIAoARNQmAHC0cDrNkPKAmRsjOzoYj2Pi0nASB1wLNz8/fv39fjuPxeOrr6x0Ox5EjR3Jzc0U9LEFjiRKLxQK3DcWk5czNza1GLScR3L59+/79+yyzQN///vc/+eQTvB9IgZnRclYYRkdH8/Lyoq4Fam5ufumllwRBSIeIDiLj+zjx3XffTU5ORk00PTAw8NZbb6WnBJDxfULA6r5yENjd3e31etNwKyCrlpMyGiPSQSwRQZ2rj4mQDMSp5eDVcBaLhfiJakPctHA4DJUGSINbODAtHZ4ko9G4efNm5cn/+vr6733ve4xtImcsPBaekDqzJLfg2Gg00sMkvCdLLqGz+C/WcqJ+Eh7LG3KfDxJPiOUNuc8HEdel5pJLMbDko+x4hFBvby/HcT6fD2o5LMYihOTSl0dtk3A4LLcny2QyLbOWI/0pPQfDVLA87gih/fv3T09PFxcXw5/SIXzNjPVixs6dO4PBIJ7pU8DQ0NDf//535U1hy4uM72NAXl5efn4+NQutFA6HY25u7plnnklNreLGCpMdlxFRN/ZiuFyuH/3oR+kwDo2KmJ97lt397EkAVM9RkAxgES+q49vb26enp/fu3Usd0jPmbUBqt4nCxkIlLYdYeoVktBw4qqcOOCGNKm8QNISQ2WympupOzbNVWVl56dIlZU5JSck//vEPcY6P2iaMxmZlZcl99UcKuTYhSgwGg81mi0fLURfxTQEJ8mkWkg38uEd1vNPpvH79unRyl30LBzQ2EZryURCpe9+vrBBu06ZNyls2EULV1dV//vOfqVP66WBsRseLGRUVFcFgMKrje3p6Pvvss6hSXjojM87/P6xW67p164jNlxCNjY1/+tOfCgsL/X5/WskKsSKj5TxAVVWVz+dT3pWBEOrv7//oo49yc3Ph1nwRK3hfDobqCZ1ZsldTzyaX0VutMWBeXt53330XNYRraWk5fvx4dnZ2KBSSZtJibJNIJMKSqlv19OXwQPGcdB0P7zikJnSGWo5cQmepSJOglsOiW8SHnTt3Rp2nQwi5XK4f/OAHHMfp9XpC4sKr5JJkLG5GqpYD90hRQ2uYIhwjiVoOo0izjFoOHqZFdTyesamrqyM2VUmhrrHqtonCo79Kx3owoQZESUnJ3/72t127dvn9fqirPgZYdTEenrGJ6nin0/n111+XlZXhMd3j53i02p77qBtsEUK1tbXvv/9+cXExnCJ9zJAULUd1GkpYy8HJ9aI6vr+//+zZs3i1hQCQoBXp1iZKWk7cCZ3h8DUSiUAazF5Npcllr2aM8axWa2FhYVSvNzU1OZ3OkpISsQJxZ6+m0hiNNZvN6qYvV9iXo9TnMyZ0piaSJmiRSATSGLNX4wQnkKZQcxE4hIu6xkb8pJI0cIIXhUnfVTeWet1E0pdTrH0IFcZ6ia/aS8ZFGdfYtLW1LSwsPPvss6FQiOd5tSqZDmPDqHV43MZ6eG6LcY2N2+2uqalBtN5yNeBxi/FCodCaNWuiOv7IkSOhUKimpmY15MuWg9JzL7BtIlSXBsHzPNwpIAeYoZZAaWnp4OCgKLrjNyLHccQ7lQq8KCMqDWs56dDtK0PJ9+omdIY06mfW2dNSx6HlOJ3OV1991Wq1sqTDVtdYyIxEIozGJpK+XAF0Lcfr9ZrN5rgTOlM/zsnyJVIFeYMojFXLqa+v7+3tLS4uxlkgNBqNtIbULy8lkr06EWOJ9OVyWg5j+nI5LUf2W0kKd5C6o/rUxAg4ER7+WwyypVpZaqqnurEwPoRQcOXKGOsJcS1WRA93RYmOz0CKxy3Gk+LkyZPPPffcctcifUF57h8DDcPhcExNTT399NPLXZHlB3UXAAbF9xMTEwpR77LrFtJCp9MJmS6X6/jx41arFY4QqddluWgqjY2jTZRpExMTsFCn09GHFYIgUD9YCleEUXMFMNJgnMZIQwjhhMMGg+HQoUPd3d248MiRI4cPH7ZareJaNpiXWHUrUmZsfDSTyUQdPE5NTdF9jz+JyxhsMH4+CGbrk/t8EBGAyX0+CJtkMBg8Hs+dO3e2bdsmt01JejZqZIVzYUtpVGMZvx+VJGOlNIWUF1IazuhNnR6YmprSlpeXwx+uXbuGKxpHWrcEaQRZmYYQCoVCa9euLSsroyYmYbeCkbaMxsZK02g0HMddu3YNcsrLy202m5aaFQJ/RyLBqDpl4HmeUdJdhcCuJFBaWspxnHbPnj3wtwsXLrBPoacJVrMqIwe9Xn/hwgVYXlVVxfO8lrqjbGhoSPV6sE/ISKHRaFicivs3lhNSadSPVjIeC5HsuzCm/pjqSux03e7du+FvbrcbDkPkLsnu1PiYCi0upVFbHG6PUpdGRayf0WMkx0rTaDSzs7Nutxtydu/ezfO8RhCEzZs337hxg/jZ5XI1NDQQhVR5g7p9hyhR2KoiLWGUN5BMFgiWiIP6JVJ2LSduY6G+laCWw2Ls6dOnGxsbicKSkhK8iE2LEPrpT3+KAE6cOAELEdsIVgNApTGejf2EkKOwk0YKqCbjA1W0guO4pLYJlUN1ouhuLUIIPt8IoVOnTqXPSiaBTcuJb0ghCAL83Fr6J0uKaqzX6z116hQsF92tRQjt3buXevDAwEBi1ctgOSHnPtHdWoSQyWRqb2+HpLa2tkzgtELB83xbWxssb29vF4csD/q65uZm6il6e3uJkuTpFsrGxEeT67rjEEvUNTbZbfLee+9RD5E6WoM33+j1+n379o2MjEC2x+PJzs7OdAArBRzHzc/P5+bmwp/q6+uHh4dFoUu3uLio0+lMJtPbb79N9f3hw4ePHz+OEwKkRsshaIzyhlxkhdi0HCLapBqbDC2HoCWu5ZjN5sOHDyMa3n77bZzRGxurFcODmpqa6upqeEBfX9/nn39OTfuBoW7ogpilF8QgbyyXIrUsxiKEDAbD559/3tfXB3+qrq7GG1HEUz0S2/z+97+nnrGxsdHj8aR/2LPKwXGcx+OBkzkY0LmP+L6mpsbhcFCPfPHFFzO+T3NwHPfiiy9Sf3I4HOJDL4Kc0+jq6qIePDIy8tprryVevziQ0XIIyHX7r732GnXEhhD67W9/i0DFtESEkJOT09/fTz2+p6eHemeoG+EgEOSwxGmCICioL8mjUSuGtZz4jGWhUZldXV09PT3UY0+ePInHrWJL4pNosJ3S6Vuz2fzSSy/JzQodPXr0l7/8Jd6xjORzBRBtZzAYqFoOQeM4jipvwJVo1IgDJouw2WzErRMOh2F+8KysLGJ0TbQJBtVYavZqFY2l0qTGms3m3/3ud2+88QaioaWl5a9//avUZLFNHvT50lspFAp1d3dTA0SE0BtvvNHZ2am8HS5NJgOoz4dWS3Z1cg+curS4IdeYgiBwHGcwGDo7O+UcjxDq7u6WOl5aPcoabZzvUeFjzt3d3a2trT6fL2Wjv/jcwA4WLSdqDBYTLXEYjUafz9fa2iouU4YYHx9XCM7pe7KWlpa2bdumkDp+aGioqKjo4sWLsA/MIAUwmUznz58vKipSWGF16dKlbdu2Kaw3ofteo9GEw+GKigq5cSNGfX19Z2fnsnz0cRVC7PwDgUBnZ2d9fb0CeWRkpKKiIhwOC/KZAOi+F+8Uu93ucrkUruF0Os1m8+DgYPS6K14oSVDxrcRYVQVagmfAtgwODprNZuqGJBEul8tut6NoAy8NHlX6/X6imcTRnF6vP3fuXG1tbdRK9/f379+/32QySff04M+rIoRMJpN0eYxWq6V2GJAWDoehDYw06qYZnAibaqwUCm2ibAUjDVdPq9ViQ/CYQ0rDTYf31gQCgVOnTh04cACehABOIoQFG+WNRBqPxxN14ZjRaLxx40ZlZWXUCyOE2traXnnlFeJLIlJ5Q5QlEpQ3iJJEVsktu5Yjtgk09vLly++++65c7E7g0qVLJSUlUscpLJPUzM7OsgSaHMcFg8FXXnmFugyICofDYbfby8vLN27caLPZxLhAvBNhtfB1OY6T3q2MNJPJRM2Ihx7t+qjf+Q2HwzCqhsNYnufh4ytXPXYaNkTsHb1e7+Tk5NjY2JkzZ6iqDBX79+9/9913LRaL1BDlmQZW36OHkwy9vb0HDx5krJAU5eXl+fn5TzzxREFBAS6hxgiwcdWlUZmMtORVb3p6+r///e/MzMzY2BikRcWJEydefvnlWKfUYvA9ejibdvfu3ba2tmTs38ggVjQ1NfX09BQWFqLYZxjjyblSWFj48ccfj4yM5OXlxVXhDFRAXl7eyMjIxx9/jB0fB8gJTimU9QO73T4zMzM0NFRSUhLftTOIDyUlJUNDQzMzMziQk4JRQ3qg5SwtLUUiEaiCUMdExBAGD4g4jjtz5syJEycya7qTDYfD8fzzz9vtdjw4Jd7usHuHY1gkyej9QMfDu+/EnwVBUM54INKkC8e8Xu/p06f7+/szQwF10dTUdODAgYaGBnFYhpdJEr6QizYJmhht0n2PaLImAr5HMrLmzMzMtWvXzp49OzExcf78+fjGrqsZ5eXle/bsKS0traur27JlS35+PkFQxfdJybFmNBrLysoqKyvxNebn5xcWFnAUOz8/7/F4MA3q6AihrKwsoiQUCsGOK24a9bqMNIPBACcK46ZJr5ubm5udnY2bKCsra+3atfxDwKPUQlJ8j2ss1lun0xUUFMC3USAQIKaPkMxLSzocwQ0Eg1Ke56XDETkaomVMZ6RZrVY4fURd4kEdKsHgG3aZOLSm3iiqg+77ZEssGKFQSJq9WpzbikqjVo/4goccDSdoIbpB6qUhLRwOR6XhCkPfw4c4FApRJ3wUlDd18T82zic9pd9u2wAAAABJRU5ErkJggg== rgb(38,172,226) STANDARDS IEEE Developed by the   Cutoff date   Expiration date   FFFFFF rgb(80,197,216) INDUSTRY CONNECTIONS REPORT THE IEEE GLOBAL INITIATIVE ON ETHICS OF EXTENDED REALITY (XR) REPORT BUSINESS, FINANCE, AND ECONOMICS Authored by   First Last names Chapter Leader 76.5mm black   12mm 5mm FFFFFF 14mm 25mm rgb(80,197,216) 36pt Montserrat ExtraBold white INDUSTRY CONNECTIONS REPORT IEEE SA ICAP WHITE PAPER -10mm IEEE CONFORMITY ASSESSMENT PROGRAM (ICAP) PROGRAM TITLE TO GO HERE Authored by Firstname Lastname Title Firstname Lastname Title RAISING THE WORLD’S STANDARDS rgb(38,172,226) Connect with us on: Twitter: twitter.com/ieeesa Facebook: facebook.com/ieeesa LinkedIn: linkedin.com/groups/1791118 Beyond Standards blog: beyondstandards.ieee.org YouTube: youtube.com/ieeesa standards.ieee.org Phone: +1 732 981 0060   RAISING THE WORLD’S STANDARDS 3 Park Avenue, New York, NY 10016‐5997 USA http://standards.ieee.org   Tel.+1732‐981‐0060 Fax+1732‐562‐1571   RAISING THE WORLD’S STANDARDS 3 Park Avenue, New York, NY 10016‐5997 USA http://standards.ieee.org   Tel.+1732‐981‐0060 Fax+1732‐562‐1571 false true false false true false 215.9 210 279.4 297 215.9 279.4 31.7 31.7 25.4 25.4 Contents Sommaire Contents Descriptors 第 # 部分: Sub-part # Partie de sub # List of Tables List of Figures Table of Figures List of Recommendations Summary (продолжение) (continued) (continué)   abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ Noto Sans, Noto Sans HK, Noto Sans JP, Noto Sans KR, Noto Sans SC, Noto Sans TC Noto Sans Mono, Noto Sans Mono CJK HK, Noto Sans Mono CJK JP, Noto Sans Mono CJK KR, Noto Sans Mono CJK SC, Noto Sans Mono CJK TC Noto Serif, Noto Serif HK, Noto Serif JP, Noto Serif KR, Noto Serif SC, Noto Serif TC Times New Roman, STIX Two Math, Serif 10pt , Noto Sans Noto Serif SC HK JP KR SC TC , , , always always always blue underline pre wrap Code Courier New, 5pt 5pt Courier New, 6pt 5pt 5pt 95% always 8pt 8pt justify 8pt 8pt justify always 9mm italic always 9mm italic 1pt solid black 0mm 0mm 9pt 12pt 8pt true fixed always Arial bold center 6pt 4mm bold bold solid black 1pt 1mm 1mm center 1mm solid black 0.5pt center solid black 1pt 1mm 1mm 0.5mm solid black 0.5pt solid black 1pt 1mm 1mm 1mm solid black 0.5pt 10pt 12pt inherit 6pt 12pt inherit 6pt -3mm 3mm 6pt 6pt 80% 5mm 30% 6.5pt 0 0 80% 5mm super justify 12pt 0pt 2mm 1.2 always 6pt Arial bold 2mm blue underline blue underline 9pt 12pt 12pt justify 10mm 5mm 2mm justify 9pt 12pt 12pt justify 12mm 12mm right always bold Arial bold center 12pt 6pt always 6pt 12pt center left 1mm right center 100% 100% uniform scale-to-fit 11pt bold center 12pt always always bold rgb(0, 255, 0) red underline red line-through STIX Two Math 8mm 8pt always 8pt bold 135% 80% always always always 65% super normal normal 0 0 8pt always 50% super 1mm 0.5pt solid black 12pt center 12pt 0mm 0mm 1mm 2mm always justify 12pt 12pt 12mm 12pt 12mm 12pt 9.5mm 6pt disregard-shifts disregard-shifts always 65% 8pt 30% always hanging 1mm 10pt 12pt 0pt 8pt 5pt #d73a49 #d73a49 #d73a49 #d73a49 #d73a49 #d73a49 #d73a49 #6f42c1 #6f42c1 #6f42c1 #6f42c1 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #032f62 #032f62 #032f62 #e36209 #e36209 #6a737d #6a737d #6a737d #22863a #22863a #22863a #22863a #24292e #005cc5 bold #735c0f #24292e italic #24292e bold #22863a #f0fff4 #b31d28 #ffeef0 H1 always 2.5pt solid rgb(0, 176, 80) 2.5pt solid rgb(255, 0, 0) ace-tag_
([A-Z]{2,}(/[A-Z]{2,})* \d+(-\d+)*(:\d{4})?) ###fo:inline keep-together_within-line### ###/fo:inline keep-together_within-line### _ false true 0 15 0 10pt inherit 6pt 6pt 100% 50% 0mm 0mm 0.5 solid black none Start table ''. no-wrap 0pt solid black 11pt Arial Black 1 true 2 0.5 solid black true   0pt solid black 0pt solid black table table 0.5 solid black always 0mm center 1mm before center after before left 1mm 0mm 0mm 0mm none 1mm 1pt solid black left  end 7pt 1.1 0.5mm 10pt 0 0mm 0mm where   where key 0 true Start table ''. no-wrap 10pt dl false false 1 true 0.1pt solid black left 0 end 0.1pt solid black true true end false

  pt pt ^(http://|https://|www\.)?(.*) true false A closing A C closing C 5mm 100% scale-down-to-fit uniform scale(-1 1) translate(-,0) 25   " 1 - . : = _ ========== (==========) = (=)

###SOURCECODE_NEWLINE### false

bold bold 1 strong em sub sup tt sourcecode keep-together_within-line en < xmlns="http://www.w3.org/1998/Math/MathML" =" " > </ > true always none none underline <> () false 1mm 0mm 100% 100% scale-down-to-fit uniform % 14 Figure 1 1 100% 100% scale-down-to-fit uniform 100% 100% scale-down-to-fit % uniform 400 400   false true false false : preface annex <xsl:apply-templates select="xalan:nodeset($title)" mode="contents_item"/> English Français Deutsche version Figures Tableaux Tables Deutsche version inherit Arial Black bookmarks bookmarks bookmarks pt pt 0mm 0mm ###interspers123### ###/interspers123### -->