module Statsample module Reliability class << self # Calculate Chonbach's alpha for a given dataset. # only uses tuples without missing data def cronbach_alpha(ods) ds=ods.dup_only_valid n_items=ds.fields.size sum_var_items=ds.vectors.inject(0) {|ac,v| ac+v[1].variance } total=ds.vector_sum (n_items.quo(n_items-1)) * (1-(sum_var_items.quo(total.variance))) end # Calculate Chonbach's alpha for a given dataset # using standarized values for every vector. # Only uses tuples without missing data def cronbach_alpha_standarized(ods) ds=ods.dup_only_valid.fields.inject({}){|a,f| a[f]=ods[f].standarized; a }.to_dataset cronbach_alpha(ds) end end class ItemCharacteristicCurve attr_reader :totals, :counts, :vector_total def initialize (ds, vector_total=nil) vector_total||=ds.vector_sum raise ArgumentError, "Total size != Dataset size" if vector_total.size!=ds.cases @vector_total=vector_total @ds=ds @totals={} @counts=@ds.fields.inject({}) {|a,v| a[v]={};a} process end def process i=0 @ds.each do |row| tot=@vector_total[i] @totals[tot]||=0 @totals[tot]+=1 @ds.fields.each do |f| item=row[f].to_s @counts[f][tot]||={} @counts[f][tot][item]||=0 @counts[f][tot][item] += 1 end i+=1 end end # Return a hash with p for each different value on a vector def curve_field(field, item) out={} item=item.to_s @totals.each do |value,n| count_value= @counts[field][value][item].nil? ? 0 : @counts[field][value][item] out[value]=count_value.quo(n) end out end end class ItemAnalysis attr_reader :mean, :sd,:valid_n, :alpha , :alpha_standarized attr_accessor :name def initialize(ds,opts=Hash.new) @ds=ds.dup_only_valid @total=@ds.vector_sum @item_mean=@ds.vector_mean.mean @mean=@total.mean @median=@total.median @skew=@total.skew @kurtosis=@total.kurtosis @sd = @total.sd @valid_n = @total.size opts_default={:name=>"Reliability Analisis"} @opts=opts_default.merge(opts) @name=@opts[:name] begin @alpha = Statsample::Reliability.cronbach_alpha(ds) @alpha_standarized = Statsample::Reliability.cronbach_alpha_standarized(ds) rescue => e raise DatasetException.new(@ds,e), "Error calculating alpha" end end # Returns a hash with structure def item_characteristic_curve i=0 out={} total={} @ds.each do |row| tot=@total[i] @ds.fields.each do |f| out[f]||= {} total[f]||={} out[f][tot]||= 0 total[f][tot]||=0 out[f][tot]+= row[f] total[f][tot]+=1 end i+=1 end total.each do |f,var| var.each do |tot,v| out[f][tot]=out[f][tot].to_f / total[f][tot] end end out end def gnuplot_item_characteristic_curve(directory, base="crd",options={}) require 'gnuplot' crd=item_characteristic_curve @ds.fields.each do |f| x=[] y=[] Gnuplot.open do |gp| Gnuplot::Plot.new( gp ) do |plot| crd[f].sort.each do |tot,prop| x.push(tot) y.push((prop*100).to_i.to_f/100) end plot.data << Gnuplot::DataSet.new( [x, y] ) do |ds| ds.with = "linespoints" ds.notitle end end end end end def svggraph_item_characteristic_curve(directory, base="icc",options={}) require 'statsample/graph/svggraph' crd=ItemCharacteristicCurve.new(@ds) @ds.fields.each do |f| factors=@ds[f].factors.sort options={ :height=>500, :width=>800, :key=>true }.update(options) graph = ::SVG::Graph::Plot.new(options) factors.each do |factor| factor=factor.to_s dataset=[] crd.curve_field(f, factor).each do |tot,prop| dataset.push(tot) dataset.push((prop*100).to_i.to_f/100) end graph.add_data({ :title=>"#{factor}", :data=>dataset }) end File.open(directory+"/"+base+"_#{f}.svg","w") {|fp| fp.puts(graph.burn()) } end end def item_total_correlation @ds.fields.inject({}) do |a,v| vector=@ds[v].dup ds2=@ds.dup ds2.delete_vector(v) total=ds2.vector_sum a[v]=Statsample::Bivariate.pearson(vector,total) a end end def item_statistics @ds.fields.inject({}) do |a,v| a[v]={:mean=>@ds[v].mean,:sds=>@ds[v].sds} a end end # Returns a dataset with cases ordered by score # and variables ordered by difficulty def item_difficulty_analysis dif={} @ds.fields.each{|f| dif[f]=@ds[f].mean } dif_sort=dif.sort{|a,b| -(a[1]<=>b[1])} scores_sort={} scores=@ds.vector_mean scores.each_index{|i| scores_sort[i]=scores[i] } scores_sort=scores_sort.sort{|a,b| a[1]<=>b[1]} ds_new=Statsample::Dataset.new(['case','score'] + dif_sort.collect{|a,b| a}) scores_sort.each do |i,score| row=[i, score] case_row=@ds.case_as_hash(i) dif_sort.each{|variable,dif_value| row.push(case_row[variable]) } ds_new.add_case_array(row) end ds_new.update_valid_data ds_new end def stats_if_deleted @ds.fields.inject({}) do |a,v| ds2=@ds.dup ds2.delete_vector(v) total=ds2.vector_sum a[v]={} a[v][:mean]=total.mean a[v][:sds]=total.sds a[v][:variance_sample]=total.variance_sample a[v][:alpha]=Statsample::Reliability.cronbach_alpha(ds2) a end end def summary ReportBuilder.new(:no_title=>true).add(self).to_text end def report_building(builder) builder.section(:name=>@name) do |s| s.table(:name=>"Summary") do |t| t.row ["Items", @ds.fields.size] t.row ["Total Mean", @mean] t.row ["Item Mean", @item_mean] t.row ["S.D.", @sd] t.row ["Median", @median] t.row ["Skewness", "%0.4f" % @skew] t.row ["Kurtosis", "%0.4f" % @kurtosis] t.row ["Valid n", @valid_n] t.row ["Cronbach's alpha", "%0.4f" % @alpha] t.row ["Standarized Cronbach's alpha", "%0.4f" % @alpha_standarized] end itc=item_total_correlation sid=stats_if_deleted is=item_statistics s.table(:name=>"Items report", :header=>["item","mean","sd", "mean if deleted", "var if deleted", "sd if deleted"," item-total correl.", "alpha if deleted"]) do |t| @ds.fields.each do |f| t.row(["#{@ds[f].name}(#{f})", sprintf("%0.5f",is[f][:mean]), sprintf("%0.5f",is[f][:sds]), sprintf("%0.5f",sid[f][:mean]), sprintf("%0.5f",sid[f][:variance_sample]), sprintf("%0.5f",sid[f][:sds]), sprintf("%0.5f",itc[f]), sprintf("%0.5f",sid[f][:alpha])]) end end end end end end end