// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_IA32) #include "codegen.h" #include "deoptimizer.h" #include "full-codegen.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- eax : number of arguments excluding receiver // -- edi : called function (only guaranteed when // extra_args requires it) // -- esi : context // -- esp[0] : return address // -- esp[4] : last argument // -- ... // -- esp[4 * argc] : first argument (argc == eax) // -- esp[4 * (argc +1)] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; Register scratch = ebx; __ pop(scratch); // Save return address. __ push(edi); __ push(scratch); // Restore return address. } else { ASSERT(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects eax to contain the number of arguments // including the receiver and the extra arguments. __ add(Operand(eax), Immediate(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax: number of arguments // -- edi: constructor function // ----------------------------------- Label non_function_call; // Check that function is not a smi. __ JumpIfSmi(edi, &non_function_call); // Check that function is a JSFunction. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &non_function_call); // Jump to the function-specific construct stub. __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kConstructStubOffset)); __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize)); __ jmp(Operand(ebx)); // edi: called object // eax: number of arguments __ bind(&non_function_call); // Set expected number of arguments to zero (not changing eax). __ Set(ebx, Immediate(0)); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); Handle arguments_adaptor = masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ SetCallKind(ecx, CALL_AS_METHOD); __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool count_constructions) { // Should never count constructions for api objects. ASSERT(!is_api_function || !count_constructions); // Enter a construct frame. __ EnterConstructFrame(); // Store a smi-tagged arguments count on the stack. __ SmiTag(eax); __ push(eax); // Push the function to invoke on the stack. __ push(edi); // Try to allocate the object without transitioning into C code. If any of the // preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { Label undo_allocation; #ifdef ENABLE_DEBUGGER_SUPPORT ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(masm->isolate()); __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0)); __ j(not_equal, &rt_call); #endif // Verified that the constructor is a JSFunction. // Load the initial map and verify that it is in fact a map. // edi: constructor __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi __ JumpIfSmi(eax, &rt_call); // edi: constructor // eax: initial map (if proven valid below) __ CmpObjectType(eax, MAP_TYPE, ebx); __ j(not_equal, &rt_call); // Check that the constructor is not constructing a JSFunction (see comments // in Runtime_NewObject in runtime.cc). In which case the initial map's // instance type would be JS_FUNCTION_TYPE. // edi: constructor // eax: initial map __ CmpInstanceType(eax, JS_FUNCTION_TYPE); __ j(equal, &rt_call); if (count_constructions) { Label allocate; // Decrease generous allocation count. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ dec_b(FieldOperand(ecx, SharedFunctionInfo::kConstructionCountOffset)); __ j(not_zero, &allocate); __ push(eax); __ push(edi); __ push(edi); // constructor // The call will replace the stub, so the countdown is only done once. __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ pop(edi); __ pop(eax); __ bind(&allocate); } // Now allocate the JSObject on the heap. // edi: constructor // eax: initial map __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset)); __ shl(edi, kPointerSizeLog2); __ AllocateInNewSpace(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS); // Allocated the JSObject, now initialize the fields. // eax: initial map // ebx: JSObject // edi: start of next object __ mov(Operand(ebx, JSObject::kMapOffset), eax); Factory* factory = masm->isolate()->factory(); __ mov(ecx, factory->empty_fixed_array()); __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx); __ mov(Operand(ebx, JSObject::kElementsOffset), ecx); // Set extra fields in the newly allocated object. // eax: initial map // ebx: JSObject // edi: start of next object { Label loop, entry; // To allow for truncation. if (count_constructions) { __ mov(edx, factory->one_pointer_filler_map()); } else { __ mov(edx, factory->undefined_value()); } __ lea(ecx, Operand(ebx, JSObject::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ mov(Operand(ecx, 0), edx); __ add(Operand(ecx), Immediate(kPointerSize)); __ bind(&entry); __ cmp(ecx, Operand(edi)); __ j(less, &loop); } // Add the object tag to make the JSObject real, so that we can continue and // jump into the continuation code at any time from now on. Any failures // need to undo the allocation, so that the heap is in a consistent state // and verifiable. // eax: initial map // ebx: JSObject // edi: start of next object __ or_(Operand(ebx), Immediate(kHeapObjectTag)); // Check if a non-empty properties array is needed. // Allocate and initialize a FixedArray if it is. // eax: initial map // ebx: JSObject // edi: start of next object // Calculate the total number of properties described by the map. __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset)); __ movzx_b(ecx, FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset)); __ add(edx, Operand(ecx)); // Calculate unused properties past the end of the in-object properties. __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset)); __ sub(edx, Operand(ecx)); // Done if no extra properties are to be allocated. __ j(zero, &allocated); __ Assert(positive, "Property allocation count failed."); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // ebx: JSObject // edi: start of next object (will be start of FixedArray) // edx: number of elements in properties array __ AllocateInNewSpace(FixedArray::kHeaderSize, times_pointer_size, edx, edi, ecx, no_reg, &undo_allocation, RESULT_CONTAINS_TOP); // Initialize the FixedArray. // ebx: JSObject // edi: FixedArray // edx: number of elements // ecx: start of next object __ mov(eax, factory->fixed_array_map()); __ mov(Operand(edi, FixedArray::kMapOffset), eax); // setup the map __ SmiTag(edx); __ mov(Operand(edi, FixedArray::kLengthOffset), edx); // and length // Initialize the fields to undefined. // ebx: JSObject // edi: FixedArray // ecx: start of next object { Label loop, entry; __ mov(edx, factory->undefined_value()); __ lea(eax, Operand(edi, FixedArray::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ mov(Operand(eax, 0), edx); __ add(Operand(eax), Immediate(kPointerSize)); __ bind(&entry); __ cmp(eax, Operand(ecx)); __ j(below, &loop); } // Store the initialized FixedArray into the properties field of // the JSObject // ebx: JSObject // edi: FixedArray __ or_(Operand(edi), Immediate(kHeapObjectTag)); // add the heap tag __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi); // Continue with JSObject being successfully allocated // ebx: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // ebx: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(ebx); } // Allocate the new receiver object using the runtime call. __ bind(&rt_call); // Must restore edi (constructor) before calling runtime. __ mov(edi, Operand(esp, 0)); // edi: function (constructor) __ push(edi); __ CallRuntime(Runtime::kNewObject, 1); __ mov(ebx, Operand(eax)); // store result in ebx // New object allocated. // ebx: newly allocated object __ bind(&allocated); // Retrieve the function from the stack. __ pop(edi); // Retrieve smi-tagged arguments count from the stack. __ mov(eax, Operand(esp, 0)); __ SmiUntag(eax); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ push(ebx); __ push(ebx); // Setup pointer to last argument. __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, Operand(eax)); __ jmp(&entry); __ bind(&loop); __ push(Operand(ebx, ecx, times_4, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Call the function. if (is_api_function) { __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); Handle code = masm->isolate()->builtins()->HandleApiCallConstruct(); ParameterCount expected(0); __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } else { ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } // Restore context from the frame. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(eax, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ mov(eax, Operand(esp, 0)); // Restore the arguments count and leave the construct frame. __ bind(&exit); __ mov(ebx, Operand(esp, kPointerSize)); // get arguments count __ LeaveConstructFrame(); // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); __ ret(0); } void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Clear the context before we push it when entering the JS frame. __ Set(esi, Immediate(0)); // Enter an internal frame. __ EnterInternalFrame(); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Get the function from the frame and setup the context. __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ push(ecx); __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset)); // Load the number of arguments and setup pointer to the arguments. __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset)); __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset)); // Copy arguments to the stack in a loop. Label loop, entry; __ Set(ecx, Immediate(0)); __ jmp(&entry); __ bind(&loop); __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv __ push(Operand(edx, 0)); // dereference handle __ inc(Operand(ecx)); __ bind(&entry); __ cmp(ecx, Operand(eax)); __ j(not_equal, &loop); // Get the function from the stack and call it. __ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize)); // +1 ~ receiver // Invoke the code. if (is_construct) { __ call(masm->isolate()->builtins()->JSConstructCall(), RelocInfo::CODE_TARGET); } else { ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } // Exit the JS frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. __ LeaveInternalFrame(); __ ret(1 * kPointerSize); // remove receiver } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_LazyCompile(MacroAssembler* masm) { // Enter an internal frame. __ EnterInternalFrame(); // Push a copy of the function. __ push(edi); // Push call kind information. __ push(ecx); __ push(edi); // Function is also the parameter to the runtime call. __ CallRuntime(Runtime::kLazyCompile, 1); // Restore call kind information. __ pop(ecx); // Restore receiver. __ pop(edi); // Tear down temporary frame. __ LeaveInternalFrame(); // Do a tail-call of the compiled function. __ lea(eax, FieldOperand(eax, Code::kHeaderSize)); __ jmp(Operand(eax)); } void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { // Enter an internal frame. __ EnterInternalFrame(); // Push a copy of the function onto the stack. __ push(edi); // Push call kind information. __ push(ecx); __ push(edi); // Function is also the parameter to the runtime call. __ CallRuntime(Runtime::kLazyRecompile, 1); // Restore call kind information. __ pop(ecx); // Restore receiver. __ pop(edi); // Tear down temporary frame. __ LeaveInternalFrame(); // Do a tail-call of the compiled function. __ lea(eax, FieldOperand(eax, Code::kHeaderSize)); __ jmp(Operand(eax)); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { // Enter an internal frame. __ EnterInternalFrame(); // Pass the function and deoptimization type to the runtime system. __ push(Immediate(Smi::FromInt(static_cast(type)))); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); // Tear down temporary frame. __ LeaveInternalFrame(); // Get the full codegen state from the stack and untag it. __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ SmiUntag(ecx); // Switch on the state. Label not_no_registers, not_tos_eax; __ cmp(ecx, FullCodeGenerator::NO_REGISTERS); __ j(not_equal, ¬_no_registers, Label::kNear); __ ret(1 * kPointerSize); // Remove state. __ bind(¬_no_registers); __ mov(eax, Operand(esp, 2 * kPointerSize)); __ cmp(ecx, FullCodeGenerator::TOS_REG); __ j(not_equal, ¬_tos_eax, Label::kNear); __ ret(2 * kPointerSize); // Remove state, eax. __ bind(¬_tos_eax); __ Abort("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_NotifyOSR(MacroAssembler* masm) { // TODO(kasperl): Do we need to save/restore the XMM registers too? // For now, we are relying on the fact that Runtime::NotifyOSR // doesn't do any garbage collection which allows us to save/restore // the registers without worrying about which of them contain // pointers. This seems a bit fragile. __ pushad(); __ EnterInternalFrame(); __ CallRuntime(Runtime::kNotifyOSR, 0); __ LeaveInternalFrame(); __ popad(); __ ret(0); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { Factory* factory = masm->isolate()->factory(); // 1. Make sure we have at least one argument. { Label done; __ test(eax, Operand(eax)); __ j(not_zero, &done); __ pop(ebx); __ push(Immediate(factory->undefined_value())); __ push(ebx); __ inc(eax); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. Label non_function; // 1 ~ return address. __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize)); __ JumpIfSmi(edi, &non_function); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &non_function); // 3a. Patch the first argument if necessary when calling a function. Label shift_arguments; { Label convert_to_object, use_global_receiver, patch_receiver; // Change context eagerly in case we need the global receiver. __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset), 1 << SharedFunctionInfo::kStrictModeBitWithinByte); __ j(not_equal, &shift_arguments); // Do not transform the receiver for natives (shared already in ebx). __ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset), 1 << SharedFunctionInfo::kNativeBitWithinByte); __ j(not_equal, &shift_arguments); // Compute the receiver in non-strict mode. __ mov(ebx, Operand(esp, eax, times_4, 0)); // First argument. // Call ToObject on the receiver if it is not an object, or use the // global object if it is null or undefined. __ JumpIfSmi(ebx, &convert_to_object); __ cmp(ebx, factory->null_value()); __ j(equal, &use_global_receiver); __ cmp(ebx, factory->undefined_value()); __ j(equal, &use_global_receiver); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &shift_arguments); __ bind(&convert_to_object); __ EnterInternalFrame(); // In order to preserve argument count. __ SmiTag(eax); __ push(eax); __ push(ebx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(ebx, eax); __ pop(eax); __ SmiUntag(eax); __ LeaveInternalFrame(); // Restore the function to edi. __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize)); __ jmp(&patch_receiver); // Use the global receiver object from the called function as the // receiver. __ bind(&use_global_receiver); const int kGlobalIndex = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ mov(ebx, FieldOperand(esi, kGlobalIndex)); __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset)); __ mov(ebx, FieldOperand(ebx, kGlobalIndex)); __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); __ bind(&patch_receiver); __ mov(Operand(esp, eax, times_4, 0), ebx); __ jmp(&shift_arguments); } // 3b. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. __ bind(&non_function); __ mov(Operand(esp, eax, times_4, 0), edi); // Clear edi to indicate a non-function being called. __ Set(edi, Immediate(0)); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. __ bind(&shift_arguments); { Label loop; __ mov(ecx, eax); __ bind(&loop); __ mov(ebx, Operand(esp, ecx, times_4, 0)); __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx); __ dec(ecx); __ j(not_sign, &loop); // While non-negative (to copy return address). __ pop(ebx); // Discard copy of return address. __ dec(eax); // One fewer argument (first argument is new receiver). } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin. { Label function; __ test(edi, Operand(edi)); __ j(not_zero, &function); __ Set(ebx, Immediate(0)); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); __ SetCallKind(ecx, CALL_AS_METHOD); __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset)); __ SmiUntag(ebx); __ SetCallKind(ecx, CALL_AS_METHOD); __ cmp(eax, Operand(ebx)); __ j(not_equal, masm->isolate()->builtins()->ArgumentsAdaptorTrampoline()); ParameterCount expected(0); __ InvokeCode(Operand(edx), expected, expected, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { __ EnterInternalFrame(); __ push(Operand(ebp, 4 * kPointerSize)); // push this __ push(Operand(ebp, 2 * kPointerSize)); // push arguments __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying need to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(edi, Operand::StaticVariable(real_stack_limit)); // Make ecx the space we have left. The stack might already be overflowed // here which will cause ecx to become negative. __ mov(ecx, Operand(esp)); __ sub(ecx, Operand(edi)); // Make edx the space we need for the array when it is unrolled onto the // stack. __ mov(edx, Operand(eax)); __ shl(edx, kPointerSizeLog2 - kSmiTagSize); // Check if the arguments will overflow the stack. __ cmp(ecx, Operand(edx)); __ j(greater, &okay); // Signed comparison. // Out of stack space. __ push(Operand(ebp, 4 * kPointerSize)); // push this __ push(eax); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); __ bind(&okay); // End of stack check. // Push current index and limit. const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize; const int kIndexOffset = kLimitOffset - 1 * kPointerSize; __ push(eax); // limit __ push(Immediate(0)); // index // Change context eagerly to get the right global object if // necessary. __ mov(edi, Operand(ebp, 4 * kPointerSize)); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Compute the receiver. Label call_to_object, use_global_receiver, push_receiver; __ mov(ebx, Operand(ebp, 3 * kPointerSize)); // Do not transform the receiver for strict mode functions. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset), 1 << SharedFunctionInfo::kStrictModeBitWithinByte); __ j(not_equal, &push_receiver); Factory* factory = masm->isolate()->factory(); // Do not transform the receiver for natives (shared already in ecx). __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset), 1 << SharedFunctionInfo::kNativeBitWithinByte); __ j(not_equal, &push_receiver); // Compute the receiver in non-strict mode. // Call ToObject on the receiver if it is not an object, or use the // global object if it is null or undefined. __ JumpIfSmi(ebx, &call_to_object); __ cmp(ebx, factory->null_value()); __ j(equal, &use_global_receiver); __ cmp(ebx, factory->undefined_value()); __ j(equal, &use_global_receiver); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &push_receiver); __ bind(&call_to_object); __ push(ebx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(ebx, Operand(eax)); __ jmp(&push_receiver); // Use the current global receiver object as the receiver. __ bind(&use_global_receiver); const int kGlobalOffset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ mov(ebx, FieldOperand(esi, kGlobalOffset)); __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset)); __ mov(ebx, FieldOperand(ebx, kGlobalOffset)); __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); // Push the receiver. __ bind(&push_receiver); __ push(ebx); // Copy all arguments from the array to the stack. Label entry, loop; __ mov(eax, Operand(ebp, kIndexOffset)); __ jmp(&entry); __ bind(&loop); __ mov(edx, Operand(ebp, 2 * kPointerSize)); // load arguments // Use inline caching to speed up access to arguments. Handle ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize(); __ call(ic, RelocInfo::CODE_TARGET); // It is important that we do not have a test instruction after the // call. A test instruction after the call is used to indicate that // we have generated an inline version of the keyed load. In this // case, we know that we are not generating a test instruction next. // Push the nth argument. __ push(eax); // Update the index on the stack and in register eax. __ mov(eax, Operand(ebp, kIndexOffset)); __ add(Operand(eax), Immediate(1 << kSmiTagSize)); __ mov(Operand(ebp, kIndexOffset), eax); __ bind(&entry); __ cmp(eax, Operand(ebp, kLimitOffset)); __ j(not_equal, &loop); // Invoke the function. ParameterCount actual(eax); __ SmiUntag(eax); __ mov(edi, Operand(ebp, 4 * kPointerSize)); __ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ LeaveInternalFrame(); __ ret(3 * kPointerSize); // remove this, receiver, and arguments } // Number of empty elements to allocate for an empty array. static const int kPreallocatedArrayElements = 4; // Allocate an empty JSArray. The allocated array is put into the result // register. If the parameter initial_capacity is larger than zero an elements // backing store is allocated with this size and filled with the hole values. // Otherwise the elements backing store is set to the empty FixedArray. static void AllocateEmptyJSArray(MacroAssembler* masm, Register array_function, Register result, Register scratch1, Register scratch2, Register scratch3, int initial_capacity, Label* gc_required) { ASSERT(initial_capacity >= 0); // Load the initial map from the array function. __ mov(scratch1, FieldOperand(array_function, JSFunction::kPrototypeOrInitialMapOffset)); // Allocate the JSArray object together with space for a fixed array with the // requested elements. int size = JSArray::kSize; if (initial_capacity > 0) { size += FixedArray::SizeFor(initial_capacity); } __ AllocateInNewSpace(size, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Allocated the JSArray. Now initialize the fields except for the elements // array. // result: JSObject // scratch1: initial map // scratch2: start of next object __ mov(FieldOperand(result, JSObject::kMapOffset), scratch1); Factory* factory = masm->isolate()->factory(); __ mov(FieldOperand(result, JSArray::kPropertiesOffset), factory->empty_fixed_array()); // Field JSArray::kElementsOffset is initialized later. __ mov(FieldOperand(result, JSArray::kLengthOffset), Immediate(0)); // If no storage is requested for the elements array just set the empty // fixed array. if (initial_capacity == 0) { __ mov(FieldOperand(result, JSArray::kElementsOffset), factory->empty_fixed_array()); return; } // Calculate the location of the elements array and set elements array member // of the JSArray. // result: JSObject // scratch2: start of next object __ lea(scratch1, Operand(result, JSArray::kSize)); __ mov(FieldOperand(result, JSArray::kElementsOffset), scratch1); // Initialize the FixedArray and fill it with holes. FixedArray length is // stored as a smi. // result: JSObject // scratch1: elements array // scratch2: start of next object __ mov(FieldOperand(scratch1, FixedArray::kMapOffset), factory->fixed_array_map()); __ mov(FieldOperand(scratch1, FixedArray::kLengthOffset), Immediate(Smi::FromInt(initial_capacity))); // Fill the FixedArray with the hole value. Inline the code if short. // Reconsider loop unfolding if kPreallocatedArrayElements gets changed. static const int kLoopUnfoldLimit = 4; STATIC_ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit); if (initial_capacity <= kLoopUnfoldLimit) { // Use a scratch register here to have only one reloc info when unfolding // the loop. __ mov(scratch3, factory->the_hole_value()); for (int i = 0; i < initial_capacity; i++) { __ mov(FieldOperand(scratch1, FixedArray::kHeaderSize + i * kPointerSize), scratch3); } } else { Label loop, entry; __ jmp(&entry); __ bind(&loop); __ mov(Operand(scratch1, 0), factory->the_hole_value()); __ add(Operand(scratch1), Immediate(kPointerSize)); __ bind(&entry); __ cmp(scratch1, Operand(scratch2)); __ j(below, &loop); } } // Allocate a JSArray with the number of elements stored in a register. The // register array_function holds the built-in Array function and the register // array_size holds the size of the array as a smi. The allocated array is put // into the result register and beginning and end of the FixedArray elements // storage is put into registers elements_array and elements_array_end (see // below for when that is not the case). If the parameter fill_with_holes is // true the allocated elements backing store is filled with the hole values // otherwise it is left uninitialized. When the backing store is filled the // register elements_array is scratched. static void AllocateJSArray(MacroAssembler* masm, Register array_function, // Array function. Register array_size, // As a smi, cannot be 0. Register result, Register elements_array, Register elements_array_end, Register scratch, bool fill_with_hole, Label* gc_required) { ASSERT(scratch.is(edi)); // rep stos destination ASSERT(!fill_with_hole || array_size.is(ecx)); // rep stos count ASSERT(!fill_with_hole || !result.is(eax)); // result is never eax // Load the initial map from the array function. __ mov(elements_array, FieldOperand(array_function, JSFunction::kPrototypeOrInitialMapOffset)); // Allocate the JSArray object together with space for a FixedArray with the // requested elements. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize, times_half_pointer_size, // array_size is a smi. array_size, result, elements_array_end, scratch, gc_required, TAG_OBJECT); // Allocated the JSArray. Now initialize the fields except for the elements // array. // result: JSObject // elements_array: initial map // elements_array_end: start of next object // array_size: size of array (smi) __ mov(FieldOperand(result, JSObject::kMapOffset), elements_array); Factory* factory = masm->isolate()->factory(); __ mov(elements_array, factory->empty_fixed_array()); __ mov(FieldOperand(result, JSArray::kPropertiesOffset), elements_array); // Field JSArray::kElementsOffset is initialized later. __ mov(FieldOperand(result, JSArray::kLengthOffset), array_size); // Calculate the location of the elements array and set elements array member // of the JSArray. // result: JSObject // elements_array_end: start of next object // array_size: size of array (smi) __ lea(elements_array, Operand(result, JSArray::kSize)); __ mov(FieldOperand(result, JSArray::kElementsOffset), elements_array); // Initialize the fixed array. FixedArray length is stored as a smi. // result: JSObject // elements_array: elements array // elements_array_end: start of next object // array_size: size of array (smi) __ mov(FieldOperand(elements_array, FixedArray::kMapOffset), factory->fixed_array_map()); // For non-empty JSArrays the length of the FixedArray and the JSArray is the // same. __ mov(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size); // Fill the allocated FixedArray with the hole value if requested. // result: JSObject // elements_array: elements array if (fill_with_hole) { __ SmiUntag(array_size); __ lea(edi, Operand(elements_array, FixedArray::kHeaderSize - kHeapObjectTag)); __ mov(eax, factory->the_hole_value()); __ cld(); // Do not use rep stos when filling less than kRepStosThreshold // words. const int kRepStosThreshold = 16; Label loop, entry, done; __ cmp(ecx, kRepStosThreshold); __ j(below, &loop); // Note: ecx > 0. __ rep_stos(); __ jmp(&done); __ bind(&loop); __ stos(); __ bind(&entry); __ cmp(edi, Operand(elements_array_end)); __ j(below, &loop); __ bind(&done); } } // Create a new array for the built-in Array function. This function allocates // the JSArray object and the FixedArray elements array and initializes these. // If the Array cannot be constructed in native code the runtime is called. This // function assumes the following state: // edi: constructor (built-in Array function) // eax: argc // esp[0]: return address // esp[4]: last argument // This function is used for both construct and normal calls of Array. Whether // it is a construct call or not is indicated by the construct_call parameter. // The only difference between handling a construct call and a normal call is // that for a construct call the constructor function in edi needs to be // preserved for entering the generic code. In both cases argc in eax needs to // be preserved. static void ArrayNativeCode(MacroAssembler* masm, bool construct_call, Label* call_generic_code) { Label argc_one_or_more, argc_two_or_more, prepare_generic_code_call, empty_array, not_empty_array; // Push the constructor and argc. No need to tag argc as a smi, as there will // be no garbage collection with this on the stack. int push_count = 0; if (construct_call) { push_count++; __ push(edi); } push_count++; __ push(eax); // Check for array construction with zero arguments. __ test(eax, Operand(eax)); __ j(not_zero, &argc_one_or_more); __ bind(&empty_array); // Handle construction of an empty array. AllocateEmptyJSArray(masm, edi, eax, ebx, ecx, edi, kPreallocatedArrayElements, &prepare_generic_code_call); __ IncrementCounter(masm->isolate()->counters()->array_function_native(), 1); __ pop(ebx); if (construct_call) { __ pop(edi); } __ ret(kPointerSize); // Check for one argument. Bail out if argument is not smi or if it is // negative. __ bind(&argc_one_or_more); __ cmp(eax, 1); __ j(not_equal, &argc_two_or_more); STATIC_ASSERT(kSmiTag == 0); __ mov(ecx, Operand(esp, (push_count + 1) * kPointerSize)); __ test(ecx, Operand(ecx)); __ j(not_zero, ¬_empty_array); // The single argument passed is zero, so we jump to the code above used to // handle the case of no arguments passed. To adapt the stack for that we move // the return address and the pushed constructor (if pushed) one stack slot up // thereby removing the passed argument. Argc is also on the stack - at the // bottom - and it needs to be changed from 1 to 0 to have the call into the // runtime system work in case a GC is required. for (int i = push_count; i > 0; i--) { __ mov(eax, Operand(esp, i * kPointerSize)); __ mov(Operand(esp, (i + 1) * kPointerSize), eax); } __ add(Operand(esp), Immediate(2 * kPointerSize)); // Drop two stack slots. __ push(Immediate(0)); // Treat this as a call with argc of zero. __ jmp(&empty_array); __ bind(¬_empty_array); __ test(ecx, Immediate(kIntptrSignBit | kSmiTagMask)); __ j(not_zero, &prepare_generic_code_call); // Handle construction of an empty array of a certain size. Get the size from // the stack and bail out if size is to large to actually allocate an elements // array. __ cmp(ecx, JSObject::kInitialMaxFastElementArray << kSmiTagSize); __ j(greater_equal, &prepare_generic_code_call); // edx: array_size (smi) // edi: constructor // esp[0]: argc (cannot be 0 here) // esp[4]: constructor (only if construct_call) // esp[8]: return address // esp[C]: argument AllocateJSArray(masm, edi, ecx, ebx, eax, edx, edi, true, &prepare_generic_code_call); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->array_function_native(), 1); __ mov(eax, ebx); __ pop(ebx); if (construct_call) { __ pop(edi); } __ ret(2 * kPointerSize); // Handle construction of an array from a list of arguments. __ bind(&argc_two_or_more); STATIC_ASSERT(kSmiTag == 0); __ SmiTag(eax); // Convet argc to a smi. // eax: array_size (smi) // edi: constructor // esp[0] : argc // esp[4]: constructor (only if construct_call) // esp[8] : return address // esp[C] : last argument AllocateJSArray(masm, edi, eax, ebx, ecx, edx, edi, false, &prepare_generic_code_call); __ IncrementCounter(counters->array_function_native(), 1); __ mov(eax, ebx); __ pop(ebx); if (construct_call) { __ pop(edi); } __ push(eax); // eax: JSArray // ebx: argc // edx: elements_array_end (untagged) // esp[0]: JSArray // esp[4]: return address // esp[8]: last argument // Location of the last argument __ lea(edi, Operand(esp, 2 * kPointerSize)); // Location of the first array element (Parameter fill_with_holes to // AllocateJSArrayis false, so the FixedArray is returned in ecx). __ lea(edx, Operand(ecx, FixedArray::kHeaderSize - kHeapObjectTag)); // ebx: argc // edx: location of the first array element // edi: location of the last argument // esp[0]: JSArray // esp[4]: return address // esp[8]: last argument Label loop, entry; __ mov(ecx, ebx); __ jmp(&entry); __ bind(&loop); __ mov(eax, Operand(edi, ecx, times_pointer_size, 0)); __ mov(Operand(edx, 0), eax); __ add(Operand(edx), Immediate(kPointerSize)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Remove caller arguments from the stack and return. // ebx: argc // esp[0]: JSArray // esp[4]: return address // esp[8]: last argument __ pop(eax); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize)); __ push(ecx); __ ret(0); // Restore argc and constructor before running the generic code. __ bind(&prepare_generic_code_call); __ pop(eax); if (construct_call) { __ pop(edi); } __ jmp(call_generic_code); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_array_code; // Get the Array function. __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi); if (FLAG_debug_code) { // Initial map for the builtin Array function shoud be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, "Unexpected initial map for Array function"); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, "Unexpected initial map for Array function"); } // Run the native code for the Array function called as a normal function. ArrayNativeCode(masm, false, &generic_array_code); // Jump to the generic array code in case the specialized code cannot handle // the construction. __ bind(&generic_array_code); Handle array_code = masm->isolate()->builtins()->ArrayCodeGeneric(); __ jmp(array_code, RelocInfo::CODE_TARGET); } void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- edi : constructor // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_constructor; if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, "Unexpected initial map for Array function"); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, "Unexpected initial map for Array function"); } // Run the native code for the Array function called as constructor. ArrayNativeCode(masm, true, &generic_constructor); // Jump to the generic construct code in case the specialized code cannot // handle the construction. __ bind(&generic_constructor); Handle generic_construct_stub = masm->isolate()->builtins()->JSConstructStubGeneric(); __ jmp(generic_construct_stub, RelocInfo::CODE_TARGET); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : constructor function // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1); if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx); __ cmp(edi, Operand(ecx)); __ Assert(equal, "Unexpected String function"); } // Load the first argument into eax and get rid of the rest // (including the receiver). Label no_arguments; __ test(eax, Operand(eax)); __ j(zero, &no_arguments); __ mov(ebx, Operand(esp, eax, times_pointer_size, 0)); __ pop(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ push(ecx); __ mov(eax, ebx); // Lookup the argument in the number to string cache. Label not_cached, argument_is_string; NumberToStringStub::GenerateLookupNumberStringCache( masm, eax, // Input. ebx, // Result. ecx, // Scratch 1. edx, // Scratch 2. false, // Input is known to be smi? ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1); __ bind(&argument_is_string); // ----------- S t a t e ------------- // -- ebx : argument converted to string // -- edi : constructor function // -- esp[0] : return address // ----------------------------------- // Allocate a JSValue and put the tagged pointer into eax. Label gc_required; __ AllocateInNewSpace(JSValue::kSize, eax, // Result. ecx, // New allocation top (we ignore it). no_reg, &gc_required, TAG_OBJECT); // Set the map. __ LoadGlobalFunctionInitialMap(edi, ecx); if (FLAG_debug_code) { __ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset), JSValue::kSize >> kPointerSizeLog2); __ Assert(equal, "Unexpected string wrapper instance size"); __ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0); __ Assert(equal, "Unexpected unused properties of string wrapper"); } __ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx); // Set properties and elements. Factory* factory = masm->isolate()->factory(); __ Set(ecx, Immediate(factory->empty_fixed_array())); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx); __ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx); // Set the value. __ mov(FieldOperand(eax, JSValue::kValueOffset), ebx); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); // We're done. Return. __ ret(0); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ bind(¬_cached); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(eax, &convert_argument); Condition is_string = masm->IsObjectStringType(eax, ebx, ecx); __ j(NegateCondition(is_string), &convert_argument); __ mov(ebx, eax); __ IncrementCounter(counters->string_ctor_string_value(), 1); __ jmp(&argument_is_string); // Invoke the conversion builtin and put the result into ebx. __ bind(&convert_argument); __ IncrementCounter(counters->string_ctor_conversions(), 1); __ EnterInternalFrame(); __ push(edi); // Preserve the function. __ push(eax); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); __ pop(edi); __ LeaveInternalFrame(); __ mov(ebx, eax); __ jmp(&argument_is_string); // Load the empty string into ebx, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ bind(&no_arguments); __ Set(ebx, Immediate(factory->empty_string())); __ pop(ecx); __ lea(esp, Operand(esp, kPointerSize)); __ push(ecx); __ jmp(&argument_is_string); // At this point the argument is already a string. Call runtime to // create a string wrapper. __ bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1); __ EnterInternalFrame(); __ push(ebx); __ CallRuntime(Runtime::kNewStringWrapper, 1); __ LeaveInternalFrame(); __ ret(0); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(ebp); __ mov(ebp, Operand(esp)); // Store the arguments adaptor context sentinel. __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Push the function on the stack. __ push(edi); // Preserve the number of arguments on the stack. Must preserve eax, // ebx and ecx because these registers are used when copying the // arguments and the receiver. STATIC_ASSERT(kSmiTagSize == 1); __ lea(edi, Operand(eax, eax, times_1, kSmiTag)); __ push(edi); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ leave(); // Remove caller arguments from the stack. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : actual number of arguments // -- ebx : expected number of arguments // -- ecx : call kind information // -- edx : code entry to call // ----------------------------------- Label invoke, dont_adapt_arguments; __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1); Label enough, too_few; __ cmp(eax, Operand(ebx)); __ j(less, &too_few); __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(eax, Operand(ebp, eax, times_4, offset)); __ mov(edi, -1); // account for receiver Label copy; __ bind(©); __ inc(edi); __ push(Operand(eax, 0)); __ sub(Operand(eax), Immediate(kPointerSize)); __ cmp(edi, Operand(ebx)); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); // ebx = expected - actual. __ sub(ebx, Operand(eax)); // eax = -actual - 1 __ neg(eax); __ sub(Operand(eax), Immediate(1)); Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(Operand(edi), Immediate(kPointerSize)); __ test(eax, Operand(eax)); __ j(not_zero, ©); // Fill remaining expected arguments with undefined values. Label fill; __ bind(&fill); __ inc(eax); __ push(Immediate(masm->isolate()->factory()->undefined_value())); __ cmp(eax, Operand(ebx)); __ j(less, &fill); } // Call the entry point. __ bind(&invoke); // Restore function pointer. __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ call(Operand(edx)); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ jmp(Operand(edx)); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { CpuFeatures::TryForceFeatureScope scope(SSE2); if (!CpuFeatures::IsSupported(SSE2)) { __ Abort("Unreachable code: Cannot optimize without SSE2 support."); return; } // Get the loop depth of the stack guard check. This is recorded in // a test(eax, depth) instruction right after the call. Label stack_check; __ mov(ebx, Operand(esp, 0)); // return address if (FLAG_debug_code) { __ cmpb(Operand(ebx, 0), Assembler::kTestAlByte); __ Assert(equal, "test eax instruction not found after loop stack check"); } __ movzx_b(ebx, Operand(ebx, 1)); // depth // Get the loop nesting level at which we allow OSR from the // unoptimized code and check if we want to do OSR yet. If not we // should perform a stack guard check so we can get interrupts while // waiting for on-stack replacement. __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset)); __ cmpb(ebx, FieldOperand(ecx, Code::kAllowOSRAtLoopNestingLevelOffset)); __ j(greater, &stack_check); // Pass the function to optimize as the argument to the on-stack // replacement runtime function. __ EnterInternalFrame(); __ push(eax); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); __ LeaveInternalFrame(); // If the result was -1 it means that we couldn't optimize the // function. Just return and continue in the unoptimized version. Label skip; __ cmp(Operand(eax), Immediate(Smi::FromInt(-1))); __ j(not_equal, &skip, Label::kNear); __ ret(0); // If we decide not to perform on-stack replacement we perform a // stack guard check to enable interrupts. __ bind(&stack_check); Label ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm->isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, Label::kNear); StackCheckStub stub; __ TailCallStub(&stub); __ Abort("Unreachable code: returned from tail call."); __ bind(&ok); __ ret(0); __ bind(&skip); // Untag the AST id and push it on the stack. __ SmiUntag(eax); __ push(eax); // Generate the code for doing the frame-to-frame translation using // the deoptimizer infrastructure. Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR); generator.Generate(); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32