Sha256: 26da4c35cb072e869fd1cf8ea80b80f763fb32293127a5a2048617a36e9dd181
Contents?: true
Size: 1.08 KB
Versions: 17
Compression:
Stored size: 1.08 KB
Contents
# frozen_string_literal: true require 'svmkit/validation' require 'svmkit/evaluation_measure/accuracy' module SVMKit module Base # Module for all classifiers in SVMKit. module Classifier # An abstract method for fitting a model. def fit raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end # An abstract method for predicting labels. def predict raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end # Calculate the mean accuracy of the given testing data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data. # @param y [Numo::Int32] (shape: [n_samples]) True labels for testing data. # @return [Float] Mean accuracy def score(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) SVMKit::Validation.check_sample_label_size(x, y) evaluator = SVMKit::EvaluationMeasure::Accuracy.new evaluator.score(y, predict(x)) end end end end
Version data entries
17 entries across 17 versions & 1 rubygems