//! State relating to validating a WebAssembly module. //! mod canonical; pub(crate) use canonical::InternRecGroup; use self::arc::MaybeOwned; use super::{ check_max, combine_type_sizes, operators::{ty_to_str, OperatorValidator, OperatorValidatorAllocations}, types::{CoreTypeId, EntityType, RecGroupId, TypeAlloc, TypeList}, }; #[cfg(feature = "simd")] use crate::VisitSimdOperator; use crate::{ limits::*, BinaryReaderError, ConstExpr, Data, DataKind, Element, ElementKind, ExternalKind, FuncType, Global, GlobalType, HeapType, MemoryType, RecGroup, RefType, Result, SubType, Table, TableInit, TableType, TagType, TypeRef, UnpackedIndex, ValType, VisitOperator, WasmFeatures, WasmModuleResources, }; use crate::{prelude::*, CompositeInnerType}; use alloc::sync::Arc; use core::mem; // Section order for WebAssembly modules. // // Component sections are unordered and allow for duplicates, // so this isn't used for components. #[derive(Copy, Clone, Default, PartialOrd, Ord, PartialEq, Eq, Debug)] pub enum Order { #[default] Initial, Type, Import, Function, Table, Memory, Tag, Global, Export, Start, Element, DataCount, Code, Data, } #[derive(Default)] pub(crate) struct ModuleState { /// Internal state that is incrementally built-up for the module being /// validated. This houses type information for all wasm items, like /// functions. Note that this starts out as a solely owned `Arc` so we can /// get mutable access, but after we get to the code section this is never /// mutated to we can clone it cheaply and hand it to sub-validators. pub module: arc::MaybeOwned, /// Where we are, order-wise, in the wasm binary. order: Order, /// The number of data segments in the data section (if present). pub data_segment_count: u32, /// The number of functions we expect to be defined in the code section, or /// basically the length of the function section if it was found. The next /// index is where we are, in the code section index space, for the next /// entry in the code section (used to figure out what type is next for the /// function being validated). pub expected_code_bodies: Option, const_expr_allocs: OperatorValidatorAllocations, /// When parsing the code section, represents the current index in the section. code_section_index: Option, } impl ModuleState { pub fn update_order(&mut self, order: Order, offset: usize) -> Result<()> { if self.order >= order { return Err(BinaryReaderError::new("section out of order", offset)); } self.order = order; Ok(()) } pub fn validate_end(&self, offset: usize) -> Result<()> { // Ensure that the data count section, if any, was correct. if let Some(data_count) = self.module.data_count { if data_count != self.data_segment_count { return Err(BinaryReaderError::new( "data count and data section have inconsistent lengths", offset, )); } } // Ensure that the function section, if nonzero, was paired with a code // section with the appropriate length. if let Some(n) = self.expected_code_bodies { if n > 0 { return Err(BinaryReaderError::new( "function and code section have inconsistent lengths", offset, )); } } Ok(()) } pub fn next_code_index_and_type(&mut self, offset: usize) -> Result<(u32, u32)> { let index = self .code_section_index .get_or_insert(self.module.num_imported_functions as usize); if *index >= self.module.functions.len() { return Err(BinaryReaderError::new( "code section entry exceeds number of functions", offset, )); } let ty = self.module.functions[*index]; *index += 1; Ok(((*index - 1) as u32, ty)) } pub fn add_global( &mut self, mut global: Global, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { self.module .check_global_type(&mut global.ty, features, types, offset)?; self.check_const_expr(&global.init_expr, global.ty.content_type, features, types)?; self.module.assert_mut().globals.push(global.ty); Ok(()) } pub fn add_table( &mut self, mut table: Table<'_>, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { self.module .check_table_type(&mut table.ty, features, types, offset)?; match &table.init { TableInit::RefNull => { if !table.ty.element_type.is_nullable() { bail!(offset, "type mismatch: non-defaultable element type"); } } TableInit::Expr(expr) => { if !features.function_references() { bail!( offset, "tables with expression initializers require \ the function-references proposal" ); } self.check_const_expr(expr, table.ty.element_type.into(), features, types)?; } } self.module.assert_mut().tables.push(table.ty); Ok(()) } pub fn add_data_segment( &mut self, data: Data, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { match data.kind { DataKind::Passive => Ok(()), DataKind::Active { memory_index, offset_expr, } => { let ty = self.module.memory_at(memory_index, offset)?.index_type(); self.check_const_expr(&offset_expr, ty, features, types) } } } pub fn add_element_segment( &mut self, mut e: Element, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { // the `funcref` value type is allowed all the way back to the MVP, so // don't check it here let element_ty = match &mut e.items { crate::ElementItems::Functions(_) => RefType::FUNC, crate::ElementItems::Expressions(ty, _) => { self.module.check_ref_type(ty, features, offset)?; *ty } }; match e.kind { ElementKind::Active { table_index, offset_expr, } => { let table = self.module.table_at(table_index.unwrap_or(0), offset)?; if !types.reftype_is_subtype(element_ty, table.element_type) { return Err(BinaryReaderError::new( format!( "type mismatch: invalid element type `{}` for table type `{}`", ty_to_str(element_ty.into()), ty_to_str(table.element_type.into()), ), offset, )); } self.check_const_expr(&offset_expr, table.index_type(), features, types)?; } ElementKind::Passive | ElementKind::Declared => { if !features.bulk_memory() { return Err(BinaryReaderError::new( "bulk memory must be enabled", offset, )); } } } let validate_count = |count: u32| -> Result<(), BinaryReaderError> { if count > MAX_WASM_TABLE_ENTRIES as u32 { Err(BinaryReaderError::new( "number of elements is out of bounds", offset, )) } else { Ok(()) } }; match e.items { crate::ElementItems::Functions(reader) => { let count = reader.count(); validate_count(count)?; for f in reader.into_iter_with_offsets() { let (offset, f) = f?; self.module.get_func_type(f, types, offset)?; self.module.assert_mut().function_references.insert(f); } } crate::ElementItems::Expressions(ty, reader) => { validate_count(reader.count())?; for expr in reader { self.check_const_expr(&expr?, ValType::Ref(ty), features, types)?; } } } self.module.assert_mut().element_types.push(element_ty); Ok(()) } fn check_const_expr( &mut self, expr: &ConstExpr<'_>, expected_ty: ValType, features: &WasmFeatures, types: &TypeList, ) -> Result<()> { let mut validator = VisitConstOperator { offset: 0, order: self.order, uninserted_funcref: false, ops: OperatorValidator::new_const_expr( features, expected_ty, mem::take(&mut self.const_expr_allocs), ), resources: OperatorValidatorResources { types, module: &mut self.module, }, features, }; let mut ops = expr.get_operators_reader(); while !ops.eof() { validator.offset = ops.original_position(); ops.visit_operator(&mut validator)??; } validator.ops.finish(ops.original_position())?; // See comment in `RefFunc` below for why this is an assert. assert!(!validator.uninserted_funcref); self.const_expr_allocs = validator.ops.into_allocations(); return Ok(()); struct VisitConstOperator<'a> { offset: usize, uninserted_funcref: bool, ops: OperatorValidator, resources: OperatorValidatorResources<'a>, order: Order, features: &'a WasmFeatures, } impl VisitConstOperator<'_> { fn validator(&mut self) -> impl VisitOperator<'_, Output = Result<()>> { self.ops.with_resources(&self.resources, self.offset) } fn validate_extended_const(&mut self, op: &str) -> Result<()> { if self.ops.features.extended_const() { Ok(()) } else { Err(BinaryReaderError::new( format!( "constant expression required: non-constant operator: {}", op ), self.offset, )) } } fn validate_gc(&mut self, op: &str) -> Result<()> { if self.features.gc() { Ok(()) } else { Err(BinaryReaderError::new( format!( "constant expression required: non-constant operator: {}", op ), self.offset, )) } } fn validate_shared_everything_threads(&mut self, op: &str) -> Result<()> { if self.features.shared_everything_threads() { Ok(()) } else { Err(BinaryReaderError::new( format!( "constant expression required: non-constant operator: {}", op ), self.offset, )) } } fn validate_global(&mut self, index: u32) -> Result<()> { let module = &self.resources.module; let global = module.global_at(index, self.offset)?; if index >= module.num_imported_globals && !self.features.gc() { return Err(BinaryReaderError::new( "constant expression required: global.get of locally defined global", self.offset, )); } if global.mutable { return Err(BinaryReaderError::new( "constant expression required: global.get of mutable global", self.offset, )); } Ok(()) } // Functions in initialization expressions are only valid in // element segment initialization expressions and globals. In // these contexts we want to record all function references. // // Initialization expressions can also be found in the data // section, however. A `RefFunc` instruction in those situations // is always invalid and needs to produce a validation error. In // this situation, though, we can no longer modify // the state since it's been "snapshot" already for // parallel validation of functions. // // If we cannot modify the function references then this function // *should* result in a validation error, but we defer that // validation error to happen later. The `uninserted_funcref` // boolean here is used to track this and will cause a panic // (aka a fuzz bug) if we somehow forget to emit an error somewhere // else. fn insert_ref_func(&mut self, index: u32) { if self.order == Order::Data { self.uninserted_funcref = true; } else { self.resources .module .assert_mut() .function_references .insert(index); } } fn not_const(&self, instr: &str) -> BinaryReaderError { BinaryReaderError::new( format!("constant expression required: non-constant operator: {instr}"), self.offset, ) } } macro_rules! define_visit_operator { ($(@$proposal:ident $op:ident $({ $($arg:ident: $argty:ty),* })? => $visit:ident ($($ann:tt)*))*) => { $( #[allow(unused_variables)] fn $visit(&mut self $($(,$arg: $argty)*)?) -> Self::Output { define_visit_operator!(@visit self $visit $($($arg)*)?) } )* }; // These are always valid in const expressions (@visit $self:ident visit_i32_const $val:ident) => {{ $self.validator().visit_i32_const($val) }}; (@visit $self:ident visit_i64_const $val:ident) => {{ $self.validator().visit_i64_const($val) }}; (@visit $self:ident visit_f32_const $val:ident) => {{ $self.validator().visit_f32_const($val) }}; (@visit $self:ident visit_f64_const $val:ident) => {{ $self.validator().visit_f64_const($val) }}; (@visit $self:ident visit_v128_const $val:ident) => {{ $self.validator().simd_visitor().unwrap().visit_v128_const($val) }}; (@visit $self:ident visit_ref_null $val:ident) => {{ $self.validator().visit_ref_null($val) }}; (@visit $self:ident visit_end) => {{ $self.validator().visit_end() }}; // These are valid const expressions when the extended-const proposal is enabled. (@visit $self:ident visit_i32_add) => {{ $self.validate_extended_const("i32.add")?; $self.validator().visit_i32_add() }}; (@visit $self:ident visit_i32_sub) => {{ $self.validate_extended_const("i32.sub")?; $self.validator().visit_i32_sub() }}; (@visit $self:ident visit_i32_mul) => {{ $self.validate_extended_const("i32.mul")?; $self.validator().visit_i32_mul() }}; (@visit $self:ident visit_i64_add) => {{ $self.validate_extended_const("i64.add")?; $self.validator().visit_i64_add() }}; (@visit $self:ident visit_i64_sub) => {{ $self.validate_extended_const("i64.sub")?; $self.validator().visit_i64_sub() }}; (@visit $self:ident visit_i64_mul) => {{ $self.validate_extended_const("i64.mul")?; $self.validator().visit_i64_mul() }}; // These are valid const expressions with the gc proposal is // enabled. (@visit $self:ident visit_struct_new $type_index:ident) => {{ $self.validate_gc("struct.new")?; $self.validator().visit_struct_new($type_index) }}; (@visit $self:ident visit_struct_new_default $type_index:ident) => {{ $self.validate_gc("struct.new_default")?; $self.validator().visit_struct_new_default($type_index) }}; (@visit $self:ident visit_array_new $type_index:ident) => {{ $self.validate_gc("array.new")?; $self.validator().visit_array_new($type_index) }}; (@visit $self:ident visit_array_new_default $type_index:ident) => {{ $self.validate_gc("array.new_default")?; $self.validator().visit_array_new_default($type_index) }}; (@visit $self:ident visit_array_new_fixed $type_index:ident $n:ident) => {{ $self.validate_gc("array.new_fixed")?; $self.validator().visit_array_new_fixed($type_index, $n) }}; (@visit $self:ident visit_ref_i31) => {{ $self.validate_gc("ref.i31")?; $self.validator().visit_ref_i31() }}; (@visit $self:ident visit_ref_i31_shared) => {{ $self.validate_shared_everything_threads("ref.i31_shared")?; $self.validator().visit_ref_i31_shared() }}; // `global.get` is a valid const expression for imported, immutable // globals. (@visit $self:ident visit_global_get $idx:ident) => {{ $self.validate_global($idx)?; $self.validator().visit_global_get($idx) }}; // `ref.func`, if it's in a `global` initializer, will insert into // the set of referenced functions so it's processed here. (@visit $self:ident visit_ref_func $idx:ident) => {{ $self.insert_ref_func($idx); $self.validator().visit_ref_func($idx) }}; (@visit $self:ident $op:ident $($args:tt)*) => {{ Err($self.not_const(stringify!($op))) }} } impl<'a> VisitOperator<'a> for VisitConstOperator<'a> { type Output = Result<()>; #[cfg(feature = "simd")] fn simd_visitor( &mut self, ) -> Option<&mut dyn crate::VisitSimdOperator<'a, Output = Self::Output>> { Some(self) } crate::for_each_visit_operator!(define_visit_operator); } #[cfg(feature = "simd")] impl<'a> VisitSimdOperator<'a> for VisitConstOperator<'a> { crate::for_each_visit_simd_operator!(define_visit_operator); } } } #[derive(Debug)] pub(crate) struct Module { // This is set once the code section starts. // `WasmModuleResources` implementations use the snapshot to // enable parallel validation of functions. pub snapshot: Option>, // Stores indexes into the validator's types list. pub types: Vec, pub tables: Vec, pub memories: Vec, pub globals: Vec, pub element_types: Vec, pub data_count: Option, // Stores indexes into `types`. pub functions: Vec, pub tags: Vec, pub function_references: Set, pub imports: IndexMap<(String, String), Vec>, pub exports: IndexMap, pub type_size: u32, num_imported_globals: u32, num_imported_functions: u32, } impl Module { pub(crate) fn add_types( &mut self, rec_group: RecGroup, features: &WasmFeatures, types: &mut TypeAlloc, offset: usize, check_limit: bool, ) -> Result<()> { if check_limit { check_max( self.types.len(), rec_group.types().len() as u32, MAX_WASM_TYPES, "types", offset, )?; } self.canonicalize_and_intern_rec_group(features, types, rec_group, offset) } pub fn add_import( &mut self, mut import: crate::Import, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { let entity = self.check_type_ref(&mut import.ty, features, types, offset)?; let (len, max, desc) = match import.ty { TypeRef::Func(type_index) => { self.functions.push(type_index); self.num_imported_functions += 1; (self.functions.len(), MAX_WASM_FUNCTIONS, "functions") } TypeRef::Table(ty) => { self.tables.push(ty); (self.tables.len(), self.max_tables(features), "tables") } TypeRef::Memory(ty) => { self.memories.push(ty); (self.memories.len(), self.max_memories(features), "memories") } TypeRef::Tag(ty) => { self.tags.push(self.types[ty.func_type_idx as usize]); (self.tags.len(), MAX_WASM_TAGS, "tags") } TypeRef::Global(ty) => { if !features.mutable_global() && ty.mutable { return Err(BinaryReaderError::new( "mutable global support is not enabled", offset, )); } self.globals.push(ty); self.num_imported_globals += 1; (self.globals.len(), MAX_WASM_GLOBALS, "globals") } }; check_max(len, 0, max, desc, offset)?; self.type_size = combine_type_sizes(self.type_size, entity.info(types).size(), offset)?; self.imports .entry((import.module.to_string(), import.name.to_string())) .or_default() .push(entity); Ok(()) } pub fn add_export( &mut self, name: &str, ty: EntityType, features: &WasmFeatures, offset: usize, check_limit: bool, types: &TypeList, ) -> Result<()> { if !features.mutable_global() { if let EntityType::Global(global_type) = ty { if global_type.mutable { return Err(BinaryReaderError::new( "mutable global support is not enabled", offset, )); } } } if check_limit { check_max(self.exports.len(), 1, MAX_WASM_EXPORTS, "exports", offset)?; } self.type_size = combine_type_sizes(self.type_size, ty.info(types).size(), offset)?; match self.exports.insert(name.to_string(), ty) { Some(_) => Err(format_err!( offset, "duplicate export name `{name}` already defined" )), None => Ok(()), } } pub fn add_function(&mut self, type_index: u32, types: &TypeList, offset: usize) -> Result<()> { self.func_type_at(type_index, types, offset)?; self.functions.push(type_index); Ok(()) } pub fn add_memory( &mut self, ty: MemoryType, features: &WasmFeatures, offset: usize, ) -> Result<()> { self.check_memory_type(&ty, features, offset)?; self.memories.push(ty); Ok(()) } pub fn add_tag( &mut self, ty: TagType, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { self.check_tag_type(&ty, features, types, offset)?; self.tags.push(self.types[ty.func_type_idx as usize]); Ok(()) } fn sub_type_at<'a>(&self, types: &'a TypeList, idx: u32, offset: usize) -> Result<&'a SubType> { let id = self.type_id_at(idx, offset)?; Ok(&types[id]) } fn func_type_at<'a>( &self, type_index: u32, types: &'a TypeList, offset: usize, ) -> Result<&'a FuncType> { match &self .sub_type_at(types, type_index, offset)? .composite_type .inner { CompositeInnerType::Func(f) => Ok(f), _ => bail!(offset, "type index {type_index} is not a function type"), } } pub fn check_type_ref( &self, type_ref: &mut TypeRef, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result { Ok(match type_ref { TypeRef::Func(type_index) => { self.func_type_at(*type_index, types, offset)?; EntityType::Func(self.types[*type_index as usize]) } TypeRef::Table(t) => { self.check_table_type(t, features, types, offset)?; EntityType::Table(*t) } TypeRef::Memory(t) => { self.check_memory_type(t, features, offset)?; EntityType::Memory(*t) } TypeRef::Tag(t) => { self.check_tag_type(t, features, types, offset)?; EntityType::Tag(self.types[t.func_type_idx as usize]) } TypeRef::Global(t) => { self.check_global_type(t, features, types, offset)?; EntityType::Global(*t) } }) } fn check_table_type( &self, ty: &mut TableType, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { // The `funcref` value type is allowed all the way back to the MVP, so // don't check it here. if ty.element_type != RefType::FUNCREF { self.check_ref_type(&mut ty.element_type, features, offset)? } if ty.table64 && !features.memory64() { return Err(BinaryReaderError::new( "memory64 must be enabled for 64-bit tables", offset, )); } self.check_limits(ty.initial, ty.maximum, offset)?; if ty.shared { if !features.shared_everything_threads() { return Err(BinaryReaderError::new( "shared tables require the shared-everything-threads proposal", offset, )); } if !types.reftype_is_shared(ty.element_type) { return Err(BinaryReaderError::new( "shared tables must have a shared element type", offset, )); } } Ok(()) } fn check_memory_type( &self, ty: &MemoryType, features: &WasmFeatures, offset: usize, ) -> Result<()> { self.check_limits(ty.initial, ty.maximum, offset)?; let (page_size, page_size_log2) = if let Some(page_size_log2) = ty.page_size_log2 { if !features.custom_page_sizes() { return Err(BinaryReaderError::new( "the custom page sizes proposal must be enabled to \ customize a memory's page size", offset, )); } // Currently 2**0 and 2**16 are the only valid page sizes, but this // may be relaxed to allow any power of two in the future. if page_size_log2 != 0 && page_size_log2 != 16 { return Err(BinaryReaderError::new("invalid custom page size", offset)); } let page_size = 1_u64 << page_size_log2; debug_assert!(page_size.is_power_of_two()); debug_assert!(page_size == DEFAULT_WASM_PAGE_SIZE || page_size == 1); (page_size, page_size_log2) } else { let page_size_log2 = 16; debug_assert_eq!(DEFAULT_WASM_PAGE_SIZE, 1 << page_size_log2); (DEFAULT_WASM_PAGE_SIZE, page_size_log2) }; let (true_maximum, err) = if ty.memory64 { if !features.memory64() { return Err(BinaryReaderError::new( "memory64 must be enabled for 64-bit memories", offset, )); } ( max_wasm_memory64_pages(page_size), format!( "memory size must be at most 2**{} pages", 64 - page_size_log2 ), ) } else { let max = max_wasm_memory32_pages(page_size); ( max, format!("memory size must be at most {max} pages (4GiB)"), ) }; if ty.initial > true_maximum { return Err(BinaryReaderError::new(err, offset)); } if let Some(maximum) = ty.maximum { if maximum > true_maximum { return Err(BinaryReaderError::new(err, offset)); } } if ty.shared { if !features.threads() { return Err(BinaryReaderError::new( "threads must be enabled for shared memories", offset, )); } if ty.maximum.is_none() { return Err(BinaryReaderError::new( "shared memory must have maximum size", offset, )); } } Ok(()) } #[cfg(feature = "component-model")] pub(crate) fn imports_for_module_type( &self, offset: usize, ) -> Result> { // Ensure imports are unique, which is a requirement of the component model self.imports .iter() .map(|((module, name), types)| { if types.len() != 1 { bail!( offset, "module has a duplicate import name `{module}:{name}` \ that is not allowed in components", ); } Ok(((module.clone(), name.clone()), types[0])) }) .collect::>() } fn check_value_type( &self, ty: &mut ValType, features: &WasmFeatures, offset: usize, ) -> Result<()> { // The above only checks the value type for features. // We must check it if it's a reference. match ty { ValType::Ref(rt) => self.check_ref_type(rt, features, offset), _ => features .check_value_type(*ty) .map_err(|e| BinaryReaderError::new(e, offset)), } } fn check_ref_type( &self, ty: &mut RefType, features: &WasmFeatures, offset: usize, ) -> Result<()> { features .check_ref_type(*ty) .map_err(|e| BinaryReaderError::new(e, offset))?; let mut hty = ty.heap_type(); self.check_heap_type(&mut hty, offset)?; *ty = RefType::new(ty.is_nullable(), hty).unwrap(); Ok(()) } fn check_heap_type(&self, ty: &mut HeapType, offset: usize) -> Result<()> { // Check that the heap type is valid. let type_index = match ty { HeapType::Abstract { .. } => return Ok(()), HeapType::Concrete(type_index) => type_index, }; match type_index { UnpackedIndex::Module(idx) => { let id = self.type_id_at(*idx, offset)?; *type_index = UnpackedIndex::Id(id); Ok(()) } // Types at this stage should not be canonicalized. All // canonicalized types should already be validated meaning they // shouldn't be double-checked here again. UnpackedIndex::RecGroup(_) | UnpackedIndex::Id(_) => unreachable!(), } } fn check_tag_type( &self, ty: &TagType, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { if !features.exceptions() { return Err(BinaryReaderError::new( "exceptions proposal not enabled", offset, )); } let ty = self.func_type_at(ty.func_type_idx, types, offset)?; if !ty.results().is_empty() && !features.stack_switching() { return Err(BinaryReaderError::new( "invalid exception type: non-empty tag result type", offset, )); } Ok(()) } fn check_global_type( &self, ty: &mut GlobalType, features: &WasmFeatures, types: &TypeList, offset: usize, ) -> Result<()> { self.check_value_type(&mut ty.content_type, features, offset)?; if ty.shared { if !features.shared_everything_threads() { return Err(BinaryReaderError::new( "shared globals require the shared-everything-threads proposal", offset, )); } if !types.valtype_is_shared(ty.content_type) { return Err(BinaryReaderError::new( "shared globals must have a shared value type", offset, )); } } Ok(()) } fn check_limits(&self, initial: T, maximum: Option, offset: usize) -> Result<()> where T: Into, { if let Some(max) = maximum { if initial.into() > max.into() { return Err(BinaryReaderError::new( "size minimum must not be greater than maximum", offset, )); } } Ok(()) } pub fn max_tables(&self, features: &WasmFeatures) -> usize { if features.reference_types() { MAX_WASM_TABLES } else { 1 } } pub fn max_memories(&self, features: &WasmFeatures) -> usize { if features.multi_memory() { MAX_WASM_MEMORIES } else { 1 } } pub fn export_to_entity_type( &mut self, export: &crate::Export, offset: usize, ) -> Result { let check = |ty: &str, index: u32, total: usize| { if index as usize >= total { Err(format_err!( offset, "unknown {ty} {index}: exported {ty} index out of bounds", )) } else { Ok(()) } }; Ok(match export.kind { ExternalKind::Func => { check("function", export.index, self.functions.len())?; self.function_references.insert(export.index); EntityType::Func(self.types[self.functions[export.index as usize] as usize]) } ExternalKind::Table => { check("table", export.index, self.tables.len())?; EntityType::Table(self.tables[export.index as usize]) } ExternalKind::Memory => { check("memory", export.index, self.memories.len())?; EntityType::Memory(self.memories[export.index as usize]) } ExternalKind::Global => { check("global", export.index, self.globals.len())?; EntityType::Global(self.globals[export.index as usize]) } ExternalKind::Tag => { check("tag", export.index, self.tags.len())?; EntityType::Tag(self.tags[export.index as usize]) } }) } pub fn get_func_type<'a>( &self, func_idx: u32, types: &'a TypeList, offset: usize, ) -> Result<&'a FuncType> { match self.functions.get(func_idx as usize) { Some(idx) => self.func_type_at(*idx, types, offset), None => Err(format_err!( offset, "unknown function {func_idx}: func index out of bounds", )), } } fn global_at(&self, idx: u32, offset: usize) -> Result<&GlobalType> { match self.globals.get(idx as usize) { Some(t) => Ok(t), None => Err(format_err!( offset, "unknown global {idx}: global index out of bounds" )), } } fn table_at(&self, idx: u32, offset: usize) -> Result<&TableType> { match self.tables.get(idx as usize) { Some(t) => Ok(t), None => Err(format_err!( offset, "unknown table {idx}: table index out of bounds" )), } } fn memory_at(&self, idx: u32, offset: usize) -> Result<&MemoryType> { match self.memories.get(idx as usize) { Some(t) => Ok(t), None => Err(format_err!( offset, "unknown memory {idx}: memory index out of bounds" )), } } } impl InternRecGroup for Module { fn add_type_id(&mut self, id: CoreTypeId) { self.types.push(id); } fn type_id_at(&self, idx: u32, offset: usize) -> Result { self.types .get(idx as usize) .copied() .ok_or_else(|| format_err!(offset, "unknown type {idx}: type index out of bounds")) } fn types_len(&self) -> u32 { u32::try_from(self.types.len()).unwrap() } } impl Default for Module { fn default() -> Self { Self { snapshot: Default::default(), types: Default::default(), tables: Default::default(), memories: Default::default(), globals: Default::default(), element_types: Default::default(), data_count: Default::default(), functions: Default::default(), tags: Default::default(), function_references: Default::default(), imports: Default::default(), exports: Default::default(), type_size: 1, num_imported_globals: Default::default(), num_imported_functions: Default::default(), } } } struct OperatorValidatorResources<'a> { module: &'a mut MaybeOwned, types: &'a TypeList, } impl WasmModuleResources for OperatorValidatorResources<'_> { fn table_at(&self, at: u32) -> Option { self.module.tables.get(at as usize).cloned() } fn memory_at(&self, at: u32) -> Option { self.module.memories.get(at as usize).cloned() } fn tag_at(&self, at: u32) -> Option<&FuncType> { let type_id = *self.module.tags.get(at as usize)?; Some(self.types[type_id].unwrap_func()) } fn global_at(&self, at: u32) -> Option { self.module.globals.get(at as usize).cloned() } fn sub_type_at(&self, at: u32) -> Option<&SubType> { let id = *self.module.types.get(at as usize)?; Some(&self.types[id]) } fn sub_type_at_id(&self, at: CoreTypeId) -> &SubType { &self.types[at] } fn type_id_of_function(&self, at: u32) -> Option { let type_index = self.module.functions.get(at as usize)?; self.module.types.get(*type_index as usize).copied() } fn type_index_of_function(&self, at: u32) -> Option { self.module.functions.get(at as usize).copied() } fn check_heap_type(&self, t: &mut HeapType, offset: usize) -> Result<()> { self.module.check_heap_type(t, offset) } fn top_type(&self, heap_type: &HeapType) -> HeapType { self.types.top_type(heap_type) } fn element_type_at(&self, at: u32) -> Option { self.module.element_types.get(at as usize).cloned() } fn is_subtype(&self, a: ValType, b: ValType) -> bool { self.types.valtype_is_subtype(a, b) } fn is_shared(&self, ty: RefType) -> bool { self.types.reftype_is_shared(ty) } fn element_count(&self) -> u32 { self.module.element_types.len() as u32 } fn data_count(&self) -> Option { self.module.data_count } fn is_function_referenced(&self, idx: u32) -> bool { self.module.function_references.contains(&idx) } } /// The implementation of [`WasmModuleResources`] used by /// [`Validator`](crate::Validator). #[derive(Debug)] pub struct ValidatorResources(pub(crate) Arc); impl WasmModuleResources for ValidatorResources { fn table_at(&self, at: u32) -> Option { self.0.tables.get(at as usize).cloned() } fn memory_at(&self, at: u32) -> Option { self.0.memories.get(at as usize).cloned() } fn tag_at(&self, at: u32) -> Option<&FuncType> { let id = *self.0.tags.get(at as usize)?; let types = self.0.snapshot.as_ref().unwrap(); match &types[id].composite_type.inner { CompositeInnerType::Func(f) => Some(f), _ => None, } } fn global_at(&self, at: u32) -> Option { self.0.globals.get(at as usize).cloned() } fn sub_type_at(&self, at: u32) -> Option<&SubType> { let id = *self.0.types.get(at as usize)?; let types = self.0.snapshot.as_ref().unwrap(); Some(&types[id]) } fn sub_type_at_id(&self, at: CoreTypeId) -> &SubType { let types = self.0.snapshot.as_ref().unwrap(); &types[at] } fn type_id_of_function(&self, at: u32) -> Option { let type_index = *self.0.functions.get(at as usize)?; self.0.types.get(type_index as usize).copied() } fn type_index_of_function(&self, at: u32) -> Option { self.0.functions.get(at as usize).copied() } fn check_heap_type(&self, t: &mut HeapType, offset: usize) -> Result<()> { self.0.check_heap_type(t, offset) } fn top_type(&self, heap_type: &HeapType) -> HeapType { self.0.snapshot.as_ref().unwrap().top_type(heap_type) } fn element_type_at(&self, at: u32) -> Option { self.0.element_types.get(at as usize).cloned() } fn is_subtype(&self, a: ValType, b: ValType) -> bool { self.0.snapshot.as_ref().unwrap().valtype_is_subtype(a, b) } fn is_shared(&self, ty: RefType) -> bool { self.0.snapshot.as_ref().unwrap().reftype_is_shared(ty) } fn element_count(&self) -> u32 { self.0.element_types.len() as u32 } fn data_count(&self) -> Option { self.0.data_count } fn is_function_referenced(&self, idx: u32) -> bool { self.0.function_references.contains(&idx) } } const _: () = { fn assert_send() {} // Assert that `ValidatorResources` is Send so function validation // can be parallelizable fn assert() { assert_send::(); } }; mod arc { use alloc::sync::Arc; use core::ops::Deref; enum Inner { Owned(T), Shared(Arc), Empty, // Only used for swapping from owned to shared. } pub struct MaybeOwned { inner: Inner, } impl MaybeOwned { #[inline] fn as_mut(&mut self) -> Option<&mut T> { match &mut self.inner { Inner::Owned(x) => Some(x), Inner::Shared(_) => None, Inner::Empty => Self::unreachable(), } } #[inline] pub fn assert_mut(&mut self) -> &mut T { self.as_mut().unwrap() } pub fn arc(&mut self) -> &Arc { self.make_shared(); match &self.inner { Inner::Shared(x) => x, _ => Self::unreachable(), } } #[inline] fn make_shared(&mut self) { if let Inner::Shared(_) = self.inner { return; } let inner = core::mem::replace(&mut self.inner, Inner::Empty); let x = match inner { Inner::Owned(x) => x, _ => Self::unreachable(), }; let x = Arc::new(x); self.inner = Inner::Shared(x); } #[cold] #[inline(never)] fn unreachable() -> ! { unreachable!() } } impl Default for MaybeOwned { fn default() -> MaybeOwned { MaybeOwned { inner: Inner::Owned(T::default()), } } } impl Deref for MaybeOwned { type Target = T; fn deref(&self) -> &T { match &self.inner { Inner::Owned(x) => x, Inner::Shared(x) => x, Inner::Empty => Self::unreachable(), } } } }