require 'tensor_stream' require 'tensor_stream/evaluator/opencl/opencl_evaluator' # This neural network will predict the species of an iris based on sepal and petal size # Dataset: http://en.wikipedia.org/wiki/Iris_flower_data_set tf = TensorStream rows = File.readlines(File.join("samples","iris.data")).map {|l| l.chomp.split(',') } rows.shuffle! label_encodings = { 'Iris-setosa' => [1, 0, 0], 'Iris-versicolor' => [0, 1, 0], 'Iris-virginica' => [0, 0, 1] } x_data = rows.map {|row| row[0,4].map(&:to_f) } y_data = rows.map {|row| label_encodings[row[4]] } # Normalize data values before feeding into network normalize = -> (val, high, low) { (val - low) / (high - low) } # maps input to float between 0 and 1 columns = (0..3).map do |i| x_data.map {|row| row[i] } end x_data.map! do |row| row.map.with_index do |val, j| max, min = columns[j].max, columns[j].min normalize.(val, max, min) end end x_train = x_data.slice(0, 100) y_train = y_data.slice(0, 100) x_test = x_data.slice(100, 50) y_test = y_data.slice(100, 50) test_cases = [] x_train.each_with_index do |x, index| test_cases << [x, y_train[index]] end validation_cases = [] x_test.each_with_index do |x, index| validation_cases << [x, y_test[index] ] end def init_weights(shape) # Weight initialization weights = TensorStream.random_normal(shape, stddev: 0.1) TensorStream.variable(weights) end def forwardprop(x, w_1, w_2) # Forward-propagation. # IMPORTANT: yhat is not softmax since TensorFlow's softmax_cross_entropy_with_logits() does that internally. h = TensorStream.nn.sigmoid(TensorStream.matmul(x, w_1)) # The \sigma function TensorStream.matmul(h, w_2) # The \varphi function end x_size = x_train[0].size y_size = y_train[0].size h_size = 256 X = tf.placeholder(:float32, shape: [nil, x_size]) y = tf.placeholder(:float32, shape: [nil, y_size]) # Weight initializations w_1 = init_weights([x_size, h_size]) w_2 = init_weights([h_size, y_size]) # Forward propagation yhat = forwardprop(X, w_1, w_2) predict = tf.argmax(yhat, 1) # Backward propagation cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: yhat)) updates = TensorStream::Train::GradientDescentOptimizer.new(0.01).minimize(cost) # updates = TensorStream::Train::MomentumOptimizer.new(0.01, 0.5, use_nesterov: true).minimize(cost) # updates = TensorStream::Train::AdamOptimizer.new.minimize(cost) # Run SGD sess = tf.session init = tf.global_variables_initializer sess.run(init) loss = sess.run(cost, feed_dict: { X => x_test, y => y_test }) puts "loss test data set #{loss}" loss = sess.run(cost, feed_dict: { X => x_train, y => y_train }) puts "Testing the untrained network..." puts loss start_time = Time.now (0..100).each do |epoch| x_train.size.times do |i| sess.run(updates, feed_dict: {X => [x_train[i]], y => [y_train[i]]}) end loss = sess.run(cost, feed_dict: { X => x_train, y => y_train }) puts "epoch: #{epoch}, loss #{loss}" end loss = sess.run(cost, feed_dict: { X => x_train, y => y_train }) puts "loss after training #{loss}" loss = sess.run(cost, feed_dict: { X => x_test, y => y_test }) puts "loss test data set #{loss}" puts("time elapsed ", Time.now.to_i - start_time.to_i)