# frozen_string_literal: true # Factory is a helper class that makes construction of a Pops Model # much more convenient. It can be viewed as a small internal DSL for model # constructions. # For usage see tests using the factory. # # @todo All those uppercase methods ... they look bad in one way, but stand out nicely in the grammar... # decide if they should change into lower case names (some of the are lower case)... # module Puppet::Pops module Model class Factory # Shared build_visitor, since there are many instances of Factory being used KEY_LENGTH = 'length' KEY_OFFSET = 'offset' KEY_LOCATOR = 'locator' KEY_OPERATOR = 'operator' KEY_VALUE = 'value' KEY_KEYS = 'keys' KEY_NAME = 'name' KEY_BODY = 'body' KEY_EXPR = 'expr' KEY_LEFT_EXPR = 'left_expr' KEY_RIGHT_EXPR = 'right_expr' KEY_PARAMETERS = 'parameters' BUILD_VISITOR = Visitor.new(self, 'build') INFER_VISITOR = Visitor.new(self, 'infer') INTERPOLATION_VISITOR = Visitor.new(self, 'interpolate') MAPOFFSET_VISITOR = Visitor.new(self, 'map_offset') def self.infer(o) if o.instance_of?(Factory) o else new(o) end end attr_reader :model_class, :unfolded def [](key) @init_hash[key] end def []=(key, value) @init_hash[key] = value end def all_factories(&block) block.call(self) @init_hash.each_value { |value| value.all_factories(&block) if value.instance_of?(Factory) } end def model if @current.nil? # Assign a default Locator if it's missing. Should only happen when the factory is used by other # means than from a parser (e.g. unit tests) unless @init_hash.include?(KEY_LOCATOR) @init_hash[KEY_LOCATOR] = Parser::Locator.locator('', 'no file') unless @model_class <= Program @init_hash[KEY_OFFSET] = 0 @init_hash[KEY_LENGTH] = 0 end end @current = create_model end @current end # Backward API compatibility alias current model def create_model @init_hash.each_pair { |key, elem| @init_hash[key] = factory_to_model(elem) } model_class.from_asserted_hash(@init_hash) end # Initialize a factory with a single object, or a class with arguments applied to build of # created instance # def initialize(o, *args) @init_hash = {} if o.instance_of?(Class) @model_class = o BUILD_VISITOR.visit_this_class(self, o, args) else INFER_VISITOR.visit_this(self, o, EMPTY_ARRAY) end end def map_offset(model, locator) MAPOFFSET_VISITOR.visit_this_1(self, model, locator) end def map_offset_Object(o, locator) o end def map_offset_Factory(o, locator) map_offset(o.model, locator) end def map_offset_Positioned(o, locator) # Transpose the local offset, length to global "coordinates" global_offset, global_length = locator.to_global(o.offset, o.length) # mutate o.instance_variable_set(:'@offset', global_offset) o.instance_variable_set(:'@length', global_length) # Change locator since the positions were transposed to the global coordinates o.instance_variable_set(:'@locator', locator.locator) if locator.is_a? Puppet::Pops::Parser::Locator::SubLocator end # Polymorphic interpolate def interpolate() INTERPOLATION_VISITOR.visit_this_class(self, @model_class, EMPTY_ARRAY) end # Building of Model classes def build_ArithmeticExpression(o, op, a, b) @init_hash[KEY_OPERATOR] = op build_BinaryExpression(o, a, b) end def build_AssignmentExpression(o, op, a, b) @init_hash[KEY_OPERATOR] = op build_BinaryExpression(o, a, b) end def build_AttributeOperation(o, name, op, value) @init_hash[KEY_OPERATOR] = op @init_hash['attribute_name'] = name.to_s # BOOLEAN is allowed in the grammar @init_hash['value_expr'] = value end def build_AttributesOperation(o, value) @init_hash[KEY_EXPR] = value end def build_AccessExpression(o, left, keys) @init_hash[KEY_LEFT_EXPR] = left @init_hash[KEY_KEYS] = keys end def build_BinaryExpression(o, left, right) @init_hash[KEY_LEFT_EXPR] = left @init_hash[KEY_RIGHT_EXPR] = right end def build_BlockExpression(o, args) @init_hash['statements'] = args end def build_EppExpression(o, parameters_specified, body) @init_hash['parameters_specified'] = parameters_specified b = f_build_body(body) @init_hash[KEY_BODY] = b unless b.nil? end # @param rval_required [Boolean] if the call must produce a value def build_CallExpression(o, functor, rval_required, args) @init_hash['functor_expr'] = functor @init_hash['rval_required'] = rval_required @init_hash['arguments'] = args end def build_CallMethodExpression(o, functor, rval_required, lambda, args) build_CallExpression(o, functor, rval_required, args) @init_hash['lambda'] = lambda end def build_CaseExpression(o, test, args) @init_hash['test'] = test @init_hash['options'] = args end def build_CaseOption(o, value_list, then_expr) value_list = [value_list] unless value_list.is_a?(Array) @init_hash['values'] = value_list b = f_build_body(then_expr) @init_hash['then_expr'] = b unless b.nil? end def build_CollectExpression(o, type_expr, query_expr, attribute_operations) @init_hash['type_expr'] = type_expr @init_hash['query'] = query_expr @init_hash['operations'] = attribute_operations end def build_ComparisonExpression(o, op, a, b) @init_hash[KEY_OPERATOR] = op build_BinaryExpression(o, a, b) end def build_ConcatenatedString(o, args) # Strip empty segments @init_hash['segments'] = args.reject { |arg| arg.model_class == LiteralString && arg['value'].empty? } end def build_HeredocExpression(o, name, expr) @init_hash['syntax'] = name @init_hash['text_expr'] = expr end # @param name [String] a valid classname # @param parameters [Array] may be empty # @param parent_class_name [String, nil] a valid classname referencing a parent class, optional. # @param body [Array, Expression, nil] expression that constitute the body # @return [HostClassDefinition] configured from the parameters # def build_HostClassDefinition(o, name, parameters, parent_class_name, body) build_NamedDefinition(o, name, parameters, body) @init_hash['parent_class'] = parent_class_name unless parent_class_name.nil? end def build_ResourceOverrideExpression(o, resources, attribute_operations) @init_hash['resources'] = resources @init_hash['operations'] = attribute_operations end def build_ReservedWord(o, name, future) @init_hash['word'] = name @init_hash['future'] = future end def build_KeyedEntry(o, k, v) @init_hash['key'] = k @init_hash[KEY_VALUE] = v end def build_LiteralHash(o, keyed_entries, unfolded) @init_hash['entries'] = keyed_entries @unfolded = unfolded end def build_LiteralList(o, values) @init_hash['values'] = values end def build_LiteralFloat(o, val) @init_hash[KEY_VALUE] = val end def build_LiteralInteger(o, val, radix) @init_hash[KEY_VALUE] = val @init_hash['radix'] = radix end def build_LiteralString(o, value) @init_hash[KEY_VALUE] = val end def build_IfExpression(o, t, ift, els) @init_hash['test'] = t @init_hash['then_expr'] = ift @init_hash['else_expr'] = els end def build_ApplyExpression(o, args, body) @init_hash['arguments'] = args @init_hash['body'] = body end def build_MatchExpression(o, op, a, b) @init_hash[KEY_OPERATOR] = op build_BinaryExpression(o, a, b) end # Building model equivalences of Ruby objects # Allows passing regular ruby objects to the factory to produce instructions # that when evaluated produce the same thing. def infer_String(o) @model_class = LiteralString @init_hash[KEY_VALUE] = o end def infer_NilClass(o) @model_class = Nop end def infer_TrueClass(o) @model_class = LiteralBoolean @init_hash[KEY_VALUE] = o end def infer_FalseClass(o) @model_class = LiteralBoolean @init_hash[KEY_VALUE] = o end def infer_Integer(o) @model_class = LiteralInteger @init_hash[KEY_VALUE] = o end def infer_Float(o) @model_class = LiteralFloat @init_hash[KEY_VALUE] = o end def infer_Regexp(o) @model_class = LiteralRegularExpression @init_hash['pattern'] = o.inspect @init_hash[KEY_VALUE] = o end # Creates a String literal, unless the symbol is one of the special :undef, or :default # which instead creates a LiterlUndef, or a LiteralDefault. # Supports :undef because nil creates a no-op instruction. def infer_Symbol(o) case o when :undef @model_class = LiteralUndef when :default @model_class = LiteralDefault else infer_String(o.to_s) end end # Creates a LiteralList instruction from an Array, where the entries are built. def infer_Array(o) @model_class = LiteralList @init_hash['values'] = o.map { |e| Factory.infer(e) } end # Create a LiteralHash instruction from a hash, where keys and values are built # The hash entries are added in sorted order based on key.to_s # def infer_Hash(o) @model_class = LiteralHash @init_hash['entries'] = o.sort_by { |k,_| k.to_s }.map { |k, v| Factory.new(KeyedEntry, Factory.infer(k), Factory.infer(v)) } @unfolded = false end def f_build_body(body) case body when NilClass nil when Array Factory.new(BlockExpression, body) when Factory body else Factory.infer(body) end end def build_LambdaExpression(o, parameters, body, return_type) @init_hash[KEY_PARAMETERS] = parameters b = f_build_body(body) @init_hash[KEY_BODY] = b unless b.nil? @init_hash['return_type'] = return_type unless return_type.nil? end def build_NamedDefinition(o, name, parameters, body) @init_hash[KEY_PARAMETERS] = parameters b = f_build_body(body) @init_hash[KEY_BODY] = b unless b.nil? @init_hash[KEY_NAME] = name end def build_FunctionDefinition(o, name, parameters, body, return_type) @init_hash[KEY_PARAMETERS] = parameters b = f_build_body(body) @init_hash[KEY_BODY] = b unless b.nil? @init_hash[KEY_NAME] = name @init_hash['return_type'] = return_type unless return_type.nil? end def build_PlanDefinition(o, name, parameters, body, return_type=nil) @init_hash[KEY_PARAMETERS] = parameters b = f_build_body(body) @init_hash[KEY_BODY] = b unless b.nil? @init_hash[KEY_NAME] = name @init_hash['return_type'] = return_type unless return_type.nil? end def build_NodeDefinition(o, hosts, parent, body) @init_hash['host_matches'] = hosts @init_hash['parent'] = parent unless parent.nil? # no nop here b = f_build_body(body) @init_hash[KEY_BODY] = b unless b.nil? end def build_Parameter(o, name, expr) @init_hash[KEY_NAME] = name @init_hash[KEY_VALUE] = expr end def build_QualifiedReference(o, name) @init_hash['cased_value'] = name.to_s end def build_RelationshipExpression(o, op, a, b) @init_hash[KEY_OPERATOR] = op build_BinaryExpression(o, a, b) end def build_ResourceExpression(o, type_name, bodies) @init_hash['type_name'] = type_name @init_hash['bodies'] = bodies end def build_RenderStringExpression(o, string) @init_hash[KEY_VALUE] = string; end def build_ResourceBody(o, title_expression, attribute_operations) @init_hash['title'] = title_expression @init_hash['operations'] = attribute_operations end def build_ResourceDefaultsExpression(o, type_ref, attribute_operations) @init_hash['type_ref'] = type_ref @init_hash['operations'] = attribute_operations end def build_SelectorExpression(o, left, *selectors) @init_hash[KEY_LEFT_EXPR] = left @init_hash['selectors'] = selectors end def build_SelectorEntry(o, matching, value) @init_hash['matching_expr'] = matching @init_hash['value_expr'] = value end def build_QueryExpression(o, expr) @init_hash[KEY_EXPR] = expr unless Factory.nop?(expr) end def build_TypeAlias(o, name, type_expr) if type_expr.model_class <= KeyedEntry # KeyedEntry is used for the form: # # type Foo = Bar { ... } # # The entry contains Bar => { ... } and must be transformed into: # # Object[{parent => Bar, ... }] # parent = type_expr['key'] hash = type_expr['value'] pn = parent['cased_value'] unless pn == 'Object' || pn == 'TypeSet' hash['entries'] << Factory.KEY_ENTRY(Factory.QNAME('parent'), parent) parent = Factory.QREF('Object') end type_expr = parent.access([hash]) elsif type_expr.model_class <= LiteralHash # LiteralHash is used for the form: # # type Foo = { ... } # # The hash must be transformed into: # # Object[{ ... }] # type_expr = Factory.QREF('Object').access([type_expr]) end @init_hash['type_expr'] = type_expr @init_hash[KEY_NAME] = name end def build_TypeMapping(o, lhs, rhs) @init_hash['type_expr'] = lhs @init_hash['mapping_expr'] = rhs end def build_TypeDefinition(o, name, parent, body) b = f_build_body(body) @init_hash[KEY_BODY] = b unless b.nil? @init_hash['parent'] = parent @init_hash[KEY_NAME] = name end def build_UnaryExpression(o, expr) @init_hash[KEY_EXPR] = expr unless Factory.nop?(expr) end def build_Program(o, body, definitions, locator) @init_hash[KEY_BODY] = body # non containment @init_hash['definitions'] = definitions @init_hash[KEY_LOCATOR] = locator end def build_QualifiedName(o, name) @init_hash[KEY_VALUE] = name end def build_TokenValue(o) raise "Factory can not deal with a Lexer Token. Got token: #{o}. Probably caused by wrong index in grammar val[n]." end # Factory helpers def f_build_unary(klazz, expr) Factory.new(klazz, expr) end def f_build_binary_op(klazz, op, left, right) Factory.new(klazz, op, left, right) end def f_build_binary(klazz, left, right) Factory.new(klazz, left, right) end def f_arithmetic(op, r) f_build_binary_op(ArithmeticExpression, op, self, r) end def f_comparison(op, r) f_build_binary_op(ComparisonExpression, op, self, r) end def f_match(op, r) f_build_binary_op(MatchExpression, op, self, r) end # Operator helpers def in(r) f_build_binary(InExpression, self, r); end def or(r) f_build_binary(OrExpression, self, r); end def and(r) f_build_binary(AndExpression, self, r); end def not(); f_build_unary(NotExpression, self); end def minus(); f_build_unary(UnaryMinusExpression, self); end def unfold(); f_build_unary(UnfoldExpression, self); end def text(); f_build_unary(TextExpression, self); end def var(); f_build_unary(VariableExpression, self); end def access(r); f_build_binary(AccessExpression, self, r); end def dot r; f_build_binary(NamedAccessExpression, self, r); end def + r; f_arithmetic('+', r); end def - r; f_arithmetic('-', r); end def / r; f_arithmetic('/', r); end def * r; f_arithmetic('*', r); end def % r; f_arithmetic('%', r); end def << r; f_arithmetic('<<', r); end def >> r; f_arithmetic('>>', r); end def < r; f_comparison('<', r); end def <= r; f_comparison('<=', r); end def > r; f_comparison('>', r); end def >= r; f_comparison('>=', r); end def eq r; f_comparison('==', r); end def ne r; f_comparison('!=', r); end def =~ r; f_match('=~', r); end def mne r; f_match('!~', r); end def paren; f_build_unary(ParenthesizedExpression, self); end def relop(op, r) f_build_binary_op(RelationshipExpression, op, self, r) end def select(*args) Factory.new(SelectorExpression, self, *args) end # Same as access, but with varargs and arguments that must be inferred. For testing purposes def access_at(*r) f_build_binary(AccessExpression, self, r.map { |arg| Factory.infer(arg) }) end # For CaseExpression, setting the default for an already build CaseExpression def default(r) @init_hash['options'] << Factory.WHEN(Factory.infer(:default), r) self end def lambda=(lambda) @init_hash['lambda'] = lambda self end # Assignment = def set(r) f_build_binary_op(AssignmentExpression, '=', self, r) end # Assignment += def plus_set(r) f_build_binary_op(AssignmentExpression, '+=', self, r) end # Assignment -= def minus_set(r) f_build_binary_op(AssignmentExpression, '-=', self, r) end def attributes(*args) @init_hash['attributes'] = args self end def offset @init_hash[KEY_OFFSET] end def length @init_hash[KEY_LENGTH] end # Records the position (start -> end) and computes the resulting length. # def record_position(locator, start_locatable, end_locatable) # record information directly in the Positioned object start_offset = start_locatable.offset @init_hash[KEY_LOCATOR] = locator @init_hash[KEY_OFFSET] = start_offset @init_hash[KEY_LENGTH] = end_locatable.nil? ? start_locatable.length : end_locatable.offset + end_locatable.length - start_offset self end # Sets the form of the resource expression (:regular (the default), :virtual, or :exported). # Produces true if the expression was a resource expression, false otherwise. # def self.set_resource_form(expr, form) # Note: Validation handles illegal combinations return false unless expr.instance_of?(self) && expr.model_class <= AbstractResource expr['form'] = form return true end # Returns symbolic information about an expected shape of a resource expression given the LHS of a resource expr. # # * `name { }` => `:resource`, create a resource of the given type # * `Name { }` => ':defaults`, set defaults for the referenced type # * `Name[] { }` => `:override`, overrides instances referenced by LHS # * _any other_ => ':error', all other are considered illegal # def self.resource_shape(expr) if expr == 'class' :class elsif expr.instance_of?(self) mc = expr.model_class if mc <= QualifiedName :resource elsif mc <= QualifiedReference :defaults elsif mc <= AccessExpression # if Resource[e], then it is not resource specific lhs = expr[KEY_LEFT_EXPR] if lhs.model_class <= QualifiedReference && lhs[KEY_VALUE] == 'resource' && expr[KEY_KEYS].size == 1 :defaults else :override end else :error end else :error end end # Factory starting points def self.literal(o); infer(o); end def self.minus(o); infer(o).minus; end def self.unfold(o); infer(o).unfold; end def self.var(o); infer(o).var; end def self.block(*args); new(BlockExpression, args.map { |arg| infer(arg) }); end def self.string(*args); new(ConcatenatedString, args.map { |arg| infer(arg) }); end def self.text(o); infer(o).text; end def self.IF(test_e,then_e,else_e); new(IfExpression, test_e, then_e, else_e); end def self.UNLESS(test_e,then_e,else_e); new(UnlessExpression, test_e, then_e, else_e); end def self.CASE(test_e,*options); new(CaseExpression, test_e, options); end def self.WHEN(values_list, block); new(CaseOption, values_list, block); end def self.MAP(match, value); new(SelectorEntry, match, value); end def self.KEY_ENTRY(key, val); new(KeyedEntry, key, val); end def self.HASH(entries); new(LiteralHash, entries, false); end def self.HASH_UNFOLDED(entries); new(LiteralHash, entries, true); end def self.HEREDOC(name, expr); new(HeredocExpression, name, expr); end def self.STRING(*args); new(ConcatenatedString, args); end def self.LIST(entries); new(LiteralList, entries); end def self.PARAM(name, expr=nil); new(Parameter, name, expr); end def self.NODE(hosts, parent, body); new(NodeDefinition, hosts, parent, body); end # Parameters # Mark parameter as capturing the rest of arguments def captures_rest @init_hash['captures_rest'] = true end # Set Expression that should evaluate to the parameter's type def type_expr(o) @init_hash['type_expr'] = o end # Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which # case it is returned. # def self.fqn(o) o.instance_of?(Factory) && o.model_class <= QualifiedName ? self : new(QualifiedName, o) end # Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which # case it is returned. # def self.fqr(o) o.instance_of?(Factory) && o.model_class <= QualifiedReference ? self : new(QualifiedReference, o) end def self.SUBLOCATE(token, expr_factory) # expr is a Factory wrapped LiteralString, or ConcatenatedString # The token is SUBLOCATED token which has a SubLocator as the token's locator # Use the SubLocator to recalculate the offsets and lengths. model = expr_factory.model locator = token.locator expr_factory.map_offset(model, locator) model._pcore_all_contents([]) { |element| expr_factory.map_offset(element, locator) } # Returned the factory wrapping the now offset/length transformed expression(s) expr_factory end def self.TEXT(expr) new(TextExpression, infer(expr).interpolate) end # TODO_EPP def self.RENDER_STRING(o) new(RenderStringExpression, o) end def self.RENDER_EXPR(expr) new(RenderExpression, expr) end def self.EPP(parameters, body) if parameters.nil? params = [] parameters_specified = false else params = parameters parameters_specified = true end LAMBDA(params, new(EppExpression, parameters_specified, body), nil) end def self.RESERVED(name, future=false) new(ReservedWord, name, future) end # TODO: This is the same a fqn factory method, don't know if callers to fqn and QNAME can live with the # same result or not yet - refactor into one method when decided. # def self.QNAME(name) new(QualifiedName, name) end def self.NUMBER(name_or_numeric) n_radix = Utils.to_n_with_radix(name_or_numeric) if n_radix val, radix = n_radix if val.is_a?(Float) new(LiteralFloat, val) else new(LiteralInteger, val, radix) end else # Bad number should already have been caught by lexer - this should never happen #TRANSLATORS 'NUMBER' refers to a method name and the 'name_or_numeric' was the passed in value and should not be translated raise ArgumentError, _("Internal Error, NUMBER token does not contain a valid number, %{name_or_numeric}") % { name_or_numeric: name_or_numeric } end end # Convert input string to either a qualified name, a LiteralInteger with radix, or a LiteralFloat # def self.QNAME_OR_NUMBER(name) n_radix = Utils.to_n_with_radix(name) if n_radix val, radix = n_radix if val.is_a?(Float) new(LiteralFloat, val) else new(LiteralInteger, val, radix) end else new(QualifiedName, name) end end def self.QREF(name) new(QualifiedReference, name) end def self.VIRTUAL_QUERY(query_expr) new(VirtualQuery, query_expr) end def self.EXPORTED_QUERY(query_expr) new(ExportedQuery, query_expr) end def self.ARGUMENTS(args, arg) if !args.empty? && arg.model_class <= LiteralHash && arg.unfolded last = args[args.size() - 1] if last.model_class <= LiteralHash && last.unfolded last['entries'].concat(arg['entries']) return args end end args.push(arg) end def self.ATTRIBUTE_OP(name, op, expr) new(AttributeOperation, name, op, expr) end def self.ATTRIBUTES_OP(expr) new(AttributesOperation, expr) end # Same as CALL_NAMED but with inference and varargs (for testing purposes) def self.call_named(name, rval_required, *argument_list) new(CallNamedFunctionExpression, fqn(name), rval_required, argument_list.map { |arg| infer(arg) }) end def self.CALL_NAMED(name, rval_required, argument_list) new(CallNamedFunctionExpression, name, rval_required, argument_list) end def self.CALL_METHOD(functor, argument_list) new(CallMethodExpression, functor, true, nil, argument_list) end def self.COLLECT(type_expr, query_expr, attribute_operations) new(CollectExpression, type_expr, query_expr, attribute_operations) end def self.NAMED_ACCESS(type_name, bodies) new(NamedAccessExpression, type_name, bodies) end def self.RESOURCE(type_name, bodies) new(ResourceExpression, type_name, bodies) end def self.RESOURCE_DEFAULTS(type_name, attribute_operations) new(ResourceDefaultsExpression, type_name, attribute_operations) end def self.RESOURCE_OVERRIDE(resource_ref, attribute_operations) new(ResourceOverrideExpression, resource_ref, attribute_operations) end def self.RESOURCE_BODY(resource_title, attribute_operations) new(ResourceBody, resource_title, attribute_operations) end def self.PROGRAM(body, definitions, locator) new(Program, body, definitions, locator) end # Builds a BlockExpression if args size > 1, else the single expression/value in args def self.block_or_expression(args, left_brace = nil, right_brace = nil) if args.size > 1 block_expr = new(BlockExpression, args) # If given a left and right brace position, use those # otherwise use the first and last element of the block if !left_brace.nil? && !right_brace.nil? block_expr.record_position(args.first[KEY_LOCATOR], left_brace, right_brace) else block_expr.record_position(args.first[KEY_LOCATOR], args.first, args.last) end block_expr else args[0] end end def self.HOSTCLASS(name, parameters, parent, body) new(HostClassDefinition, name, parameters, parent, body) end def self.DEFINITION(name, parameters, body) new(ResourceTypeDefinition, name, parameters, body) end def self.PLAN(name, parameters, body) new(PlanDefinition, name, parameters, body, nil) end def self.APPLY(arguments, body) new(ApplyExpression, arguments, body) end def self.APPLY_BLOCK(statements) new(ApplyBlockExpression, statements) end def self.FUNCTION(name, parameters, body, return_type) new(FunctionDefinition, name, parameters, body, return_type) end def self.LAMBDA(parameters, body, return_type) new(LambdaExpression, parameters, body, return_type) end def self.TYPE_ASSIGNMENT(lhs, rhs) if lhs.model_class <= AccessExpression new(TypeMapping, lhs, rhs) else new(TypeAlias, lhs['cased_value'], rhs) end end def self.TYPE_DEFINITION(name, parent, body) new(TypeDefinition, name, parent, body) end def self.nop? o o.nil? || o.instance_of?(Factory) && o.model_class <= Nop end STATEMENT_CALLS = { 'require' => true, 'realize' => true, 'include' => true, 'contain' => true, 'tag' => true, 'debug' => true, 'info' => true, 'notice' => true, 'warning' => true, 'err' => true, 'fail' => true, 'import' => true, # discontinued, but transform it to make it call error reporting function 'break' => true, 'next' => true, 'return' => true }.freeze # Returns true if the given name is a "statement keyword" (require, include, contain, # error, notice, info, debug # def self.name_is_statement?(name) STATEMENT_CALLS.include?(name) end class ArgsToNonCallError < RuntimeError attr_reader :args, :name_expr def initialize(args, name_expr) @args = args @name_expr = name_expr end end # Transforms an array of expressions containing literal name expressions to calls if followed by an # expression, or expression list. # def self.transform_calls(expressions) expressions.reduce([]) do |memo, expr| name = memo[-1] if name.instance_of?(Factory) && name.model_class <= QualifiedName && name_is_statement?(name[KEY_VALUE]) if expr.is_a?(Array) expr = expr.reject { |e| e.is_a?(Parser::LexerSupport::TokenValue) } else expr = [expr] end the_call = self.CALL_NAMED(name, false, expr) # last positioned is last arg if there are several the_call.record_position(name[KEY_LOCATOR], name, expr[-1]) memo[-1] = the_call if expr.is_a?(CallNamedFunctionExpression) # Patch statement function call to expression style # This is needed because it is first parsed as a "statement" and the requirement changes as it becomes # an argument to the name to call transform above. expr.rval_required = true end elsif expr.is_a?(Array) raise ArgsToNonCallError.new(expr, name) else memo << expr if expr.model_class <= CallNamedFunctionExpression # Patch rvalue expression function call to statement style. # This is not really required but done to be AST model compliant expr['rval_required'] = false end end memo end end # Transforms a left expression followed by an untitled resource (in the form of attribute_operations) # @param left [Factory, Expression] the lhs followed what may be a hash def self.transform_resource_wo_title(left, attribute_ops, lbrace_token, rbrace_token) # Returning nil means accepting the given as a potential resource expression return nil unless attribute_ops.is_a? Array return nil unless left.model_class <= QualifiedName keyed_entries = attribute_ops.map do |ao| return nil if ao[KEY_OPERATOR] == '+>' KEY_ENTRY(infer(ao['attribute_name']), ao['value_expr']) end a_hash = HASH(keyed_entries) a_hash.record_position(left[KEY_LOCATOR], lbrace_token, rbrace_token) result = block_or_expression(transform_calls([left, a_hash])) result end def interpolate_Factory(c) self end def interpolate_LiteralInteger(c) # convert number to a variable self.var end def interpolate_Object(c) self end def interpolate_QualifiedName(c) self.var end # rewrite left expression to variable if it is name, number, and recurse if it is an access expression # this is for interpolation support in new lexer (${NAME}, ${NAME[}}, ${NUMBER}, ${NUMBER[]} - all # other expressions requires variables to be preceded with $ # def interpolate_AccessExpression(c) lhs = @init_hash[KEY_LEFT_EXPR] if is_interop_rewriteable?(lhs) @init_hash[KEY_LEFT_EXPR] = lhs.interpolate end self end def interpolate_NamedAccessExpression(c) lhs = @init_hash[KEY_LEFT_EXPR] if is_interop_rewriteable?(lhs) @init_hash[KEY_LEFT_EXPR] = lhs.interpolate end self end # Rewrite method calls on the form ${x.each ...} to ${$x.each} def interpolate_CallMethodExpression(c) functor_expr = @init_hash['functor_expr'] if is_interop_rewriteable?(functor_expr) @init_hash['functor_expr'] = functor_expr.interpolate end self end def is_interop_rewriteable?(o) mc = o.model_class if mc <= AccessExpression || mc <= QualifiedName || mc <= NamedAccessExpression || mc <= CallMethodExpression true elsif mc <= LiteralInteger # Only decimal integers can represent variables, else it is a number o['radix'] == 10 else false end end def self.concat(*args) result = String.new args.each do |e| if e.instance_of?(Factory) && e.model_class <= LiteralString result << e[KEY_VALUE] elsif e.is_a?(String) result << e else raise ArgumentError, _("can only concatenate strings, got %{class_name}") % { class_name: e.class } end end infer(result) end def to_s "Factory for #{@model_class}" end def factory_to_model(value) if value.instance_of?(Factory) value.contained_current(self) elsif value.instance_of?(Array) value.each_with_index { |el, idx| value[idx] = el.contained_current(self) if el.instance_of?(Factory) } else value end end def contained_current(container) if @current.nil? unless @init_hash.include?(KEY_LOCATOR) @init_hash[KEY_LOCATOR] = container[KEY_LOCATOR] @init_hash[KEY_OFFSET] = container[KEY_OFFSET] || 0 @init_hash[KEY_LENGTH] = 0 end @current = create_model end @current end end end end