// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "codegen-inl.h" #include "register-allocator-inl.h" #include "scopes.h" #include "stub-cache.h" #include "virtual-frame-inl.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm()) void VirtualFrame::Enter() { // Registers live on entry to a JS frame: // rsp: stack pointer, points to return address from this function. // rbp: base pointer, points to previous JS, ArgumentsAdaptor, or // Trampoline frame. // rsi: context of this function call. // rdi: pointer to this function object. Comment cmnt(masm(), "[ Enter JS frame"); #ifdef DEBUG if (FLAG_debug_code) { // Verify that rdi contains a JS function. The following code // relies on rax being available for use. Condition not_smi = NegateCondition(masm()->CheckSmi(rdi)); __ Check(not_smi, "VirtualFrame::Enter - rdi is not a function (smi check)."); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rax); __ Check(equal, "VirtualFrame::Enter - rdi is not a function (map check)."); } #endif EmitPush(rbp); __ movq(rbp, rsp); // Store the context in the frame. The context is kept in rsi and a // copy is stored in the frame. The external reference to rsi // remains. EmitPush(rsi); // Store the function in the frame. The frame owns the register // reference now (ie, it can keep it in rdi or spill it later). Push(rdi); SyncElementAt(element_count() - 1); cgen()->allocator()->Unuse(rdi); } void VirtualFrame::Exit() { Comment cmnt(masm(), "[ Exit JS frame"); // Record the location of the JS exit code for patching when setting // break point. __ RecordJSReturn(); // Avoid using the leave instruction here, because it is too // short. We need the return sequence to be a least the size of a // call instruction to support patching the exit code in the // debugger. See GenerateReturnSequence for the full return sequence. // TODO(X64): A patched call will be very long now. Make sure we // have enough room. __ movq(rsp, rbp); stack_pointer_ = frame_pointer(); for (int i = element_count() - 1; i > stack_pointer_; i--) { FrameElement last = elements_.RemoveLast(); if (last.is_register()) { Unuse(last.reg()); } } EmitPop(rbp); } void VirtualFrame::AllocateStackSlots() { int count = local_count(); if (count > 0) { Comment cmnt(masm(), "[ Allocate space for locals"); // The locals are initialized to a constant (the undefined value), but // we sync them with the actual frame to allocate space for spilling // them later. First sync everything above the stack pointer so we can // use pushes to allocate and initialize the locals. SyncRange(stack_pointer_ + 1, element_count() - 1); Handle undefined = FACTORY->undefined_value(); FrameElement initial_value = FrameElement::ConstantElement(undefined, FrameElement::SYNCED); if (count < kLocalVarBound) { // For fewer locals the unrolled loop is more compact. // Hope for one of the first eight registers, where the push operation // takes only one byte (kScratchRegister needs the REX.W bit). Result tmp = cgen()->allocator()->Allocate(); ASSERT(tmp.is_valid()); __ movq(tmp.reg(), undefined, RelocInfo::EMBEDDED_OBJECT); for (int i = 0; i < count; i++) { __ push(tmp.reg()); } } else { // For more locals a loop in generated code is more compact. Label alloc_locals_loop; Result cnt = cgen()->allocator()->Allocate(); ASSERT(cnt.is_valid()); __ movq(kScratchRegister, undefined, RelocInfo::EMBEDDED_OBJECT); #ifdef DEBUG Label loop_size; __ bind(&loop_size); #endif if (is_uint8(count)) { // Loading imm8 is shorter than loading imm32. // Loading only partial byte register, and using decb below. __ movb(cnt.reg(), Immediate(count)); } else { __ movl(cnt.reg(), Immediate(count)); } __ bind(&alloc_locals_loop); __ push(kScratchRegister); if (is_uint8(count)) { __ decb(cnt.reg()); } else { __ decl(cnt.reg()); } __ j(not_zero, &alloc_locals_loop); #ifdef DEBUG CHECK(masm()->SizeOfCodeGeneratedSince(&loop_size) < kLocalVarBound); #endif } for (int i = 0; i < count; i++) { elements_.Add(initial_value); stack_pointer_++; } } } void VirtualFrame::SaveContextRegister() { ASSERT(elements_[context_index()].is_memory()); __ movq(Operand(rbp, fp_relative(context_index())), rsi); } void VirtualFrame::RestoreContextRegister() { ASSERT(elements_[context_index()].is_memory()); __ movq(rsi, Operand(rbp, fp_relative(context_index()))); } void VirtualFrame::PushReceiverSlotAddress() { Result temp = cgen()->allocator()->Allocate(); ASSERT(temp.is_valid()); __ lea(temp.reg(), ParameterAt(-1)); Push(&temp); } void VirtualFrame::EmitPop(Register reg) { ASSERT(stack_pointer_ == element_count() - 1); stack_pointer_--; elements_.RemoveLast(); __ pop(reg); } void VirtualFrame::EmitPop(const Operand& operand) { ASSERT(stack_pointer_ == element_count() - 1); stack_pointer_--; elements_.RemoveLast(); __ pop(operand); } void VirtualFrame::EmitPush(Register reg, TypeInfo info) { ASSERT(stack_pointer_ == element_count() - 1); elements_.Add(FrameElement::MemoryElement(info)); stack_pointer_++; __ push(reg); } void VirtualFrame::EmitPush(const Operand& operand, TypeInfo info) { ASSERT(stack_pointer_ == element_count() - 1); elements_.Add(FrameElement::MemoryElement(info)); stack_pointer_++; __ push(operand); } void VirtualFrame::EmitPush(Immediate immediate, TypeInfo info) { ASSERT(stack_pointer_ == element_count() - 1); elements_.Add(FrameElement::MemoryElement(info)); stack_pointer_++; __ push(immediate); } void VirtualFrame::EmitPush(Smi* smi_value) { ASSERT(stack_pointer_ == element_count() - 1); elements_.Add(FrameElement::MemoryElement(TypeInfo::Smi())); stack_pointer_++; __ Push(smi_value); } void VirtualFrame::EmitPush(Handle value) { ASSERT(stack_pointer_ == element_count() - 1); TypeInfo info = TypeInfo::TypeFromValue(value); elements_.Add(FrameElement::MemoryElement(info)); stack_pointer_++; __ Push(value); } void VirtualFrame::EmitPush(Heap::RootListIndex index, TypeInfo info) { ASSERT(stack_pointer_ == element_count() - 1); elements_.Add(FrameElement::MemoryElement(info)); stack_pointer_++; __ PushRoot(index); } void VirtualFrame::Push(Expression* expr) { ASSERT(expr->IsTrivial()); Literal* lit = expr->AsLiteral(); if (lit != NULL) { Push(lit->handle()); return; } VariableProxy* proxy = expr->AsVariableProxy(); if (proxy != NULL) { Slot* slot = proxy->var()->AsSlot(); if (slot->type() == Slot::LOCAL) { PushLocalAt(slot->index()); return; } if (slot->type() == Slot::PARAMETER) { PushParameterAt(slot->index()); return; } } UNREACHABLE(); } void VirtualFrame::Push(Handle value) { if (ConstantPoolOverflowed()) { Result temp = cgen()->allocator()->Allocate(); ASSERT(temp.is_valid()); if (value->IsSmi()) { __ Move(temp.reg(), Smi::cast(*value)); } else { __ movq(temp.reg(), value, RelocInfo::EMBEDDED_OBJECT); } Push(&temp); } else { FrameElement element = FrameElement::ConstantElement(value, FrameElement::NOT_SYNCED); elements_.Add(element); } } void VirtualFrame::Drop(int count) { ASSERT(count >= 0); ASSERT(height() >= count); int num_virtual_elements = (element_count() - 1) - stack_pointer_; // Emit code to lower the stack pointer if necessary. if (num_virtual_elements < count) { int num_dropped = count - num_virtual_elements; stack_pointer_ -= num_dropped; __ addq(rsp, Immediate(num_dropped * kPointerSize)); } // Discard elements from the virtual frame and free any registers. for (int i = 0; i < count; i++) { FrameElement dropped = elements_.RemoveLast(); if (dropped.is_register()) { Unuse(dropped.reg()); } } } int VirtualFrame::InvalidateFrameSlotAt(int index) { FrameElement original = elements_[index]; // Is this element the backing store of any copies? int new_backing_index = kIllegalIndex; if (original.is_copied()) { // Verify it is copied, and find first copy. for (int i = index + 1; i < element_count(); i++) { if (elements_[i].is_copy() && elements_[i].index() == index) { new_backing_index = i; break; } } } if (new_backing_index == kIllegalIndex) { // No copies found, return kIllegalIndex. if (original.is_register()) { Unuse(original.reg()); } elements_[index] = FrameElement::InvalidElement(); return kIllegalIndex; } // This is the backing store of copies. Register backing_reg; if (original.is_memory()) { Result fresh = cgen()->allocator()->Allocate(); ASSERT(fresh.is_valid()); Use(fresh.reg(), new_backing_index); backing_reg = fresh.reg(); __ movq(backing_reg, Operand(rbp, fp_relative(index))); } else { // The original was in a register. backing_reg = original.reg(); set_register_location(backing_reg, new_backing_index); } // Invalidate the element at index. elements_[index] = FrameElement::InvalidElement(); // Set the new backing element. if (elements_[new_backing_index].is_synced()) { elements_[new_backing_index] = FrameElement::RegisterElement(backing_reg, FrameElement::SYNCED, original.type_info()); } else { elements_[new_backing_index] = FrameElement::RegisterElement(backing_reg, FrameElement::NOT_SYNCED, original.type_info()); } // Update the other copies. for (int i = new_backing_index + 1; i < element_count(); i++) { if (elements_[i].is_copy() && elements_[i].index() == index) { elements_[i].set_index(new_backing_index); elements_[new_backing_index].set_copied(); } } return new_backing_index; } void VirtualFrame::TakeFrameSlotAt(int index) { ASSERT(index >= 0); ASSERT(index <= element_count()); FrameElement original = elements_[index]; int new_backing_store_index = InvalidateFrameSlotAt(index); if (new_backing_store_index != kIllegalIndex) { elements_.Add(CopyElementAt(new_backing_store_index)); return; } switch (original.type()) { case FrameElement::MEMORY: { // Emit code to load the original element's data into a register. // Push that register as a FrameElement on top of the frame. Result fresh = cgen()->allocator()->Allocate(); ASSERT(fresh.is_valid()); FrameElement new_element = FrameElement::RegisterElement(fresh.reg(), FrameElement::NOT_SYNCED, original.type_info()); Use(fresh.reg(), element_count()); elements_.Add(new_element); __ movq(fresh.reg(), Operand(rbp, fp_relative(index))); break; } case FrameElement::REGISTER: Use(original.reg(), element_count()); // Fall through. case FrameElement::CONSTANT: case FrameElement::COPY: original.clear_sync(); elements_.Add(original); break; case FrameElement::INVALID: UNREACHABLE(); break; } } void VirtualFrame::StoreToFrameSlotAt(int index) { // Store the value on top of the frame to the virtual frame slot at // a given index. The value on top of the frame is left in place. // This is a duplicating operation, so it can create copies. ASSERT(index >= 0); ASSERT(index < element_count()); int top_index = element_count() - 1; FrameElement top = elements_[top_index]; FrameElement original = elements_[index]; if (top.is_copy() && top.index() == index) return; ASSERT(top.is_valid()); InvalidateFrameSlotAt(index); // InvalidateFrameSlotAt can potentially change any frame element, due // to spilling registers to allocate temporaries in order to preserve // the copy-on-write semantics of aliased elements. Reload top from // the frame. top = elements_[top_index]; if (top.is_copy()) { // There are two cases based on the relative positions of the // stored-to slot and the backing slot of the top element. int backing_index = top.index(); ASSERT(backing_index != index); if (backing_index < index) { // 1. The top element is a copy of a slot below the stored-to // slot. The stored-to slot becomes an unsynced copy of that // same backing slot. elements_[index] = CopyElementAt(backing_index); } else { // 2. The top element is a copy of a slot above the stored-to // slot. The stored-to slot becomes the new (unsynced) backing // slot and both the top element and the element at the former // backing slot become copies of it. The sync state of the top // and former backing elements is preserved. FrameElement backing_element = elements_[backing_index]; ASSERT(backing_element.is_memory() || backing_element.is_register()); if (backing_element.is_memory()) { // Because sets of copies are canonicalized to be backed by // their lowest frame element, and because memory frame // elements are backed by the corresponding stack address, we // have to move the actual value down in the stack. // // TODO(209): considering allocating the stored-to slot to the // temp register. Alternatively, allow copies to appear in // any order in the frame and lazily move the value down to // the slot. __ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index))); __ movq(Operand(rbp, fp_relative(index)), kScratchRegister); } else { set_register_location(backing_element.reg(), index); if (backing_element.is_synced()) { // If the element is a register, we will not actually move // anything on the stack but only update the virtual frame // element. backing_element.clear_sync(); } } elements_[index] = backing_element; // The old backing element becomes a copy of the new backing // element. FrameElement new_element = CopyElementAt(index); elements_[backing_index] = new_element; if (backing_element.is_synced()) { elements_[backing_index].set_sync(); } // All the copies of the old backing element (including the top // element) become copies of the new backing element. for (int i = backing_index + 1; i < element_count(); i++) { if (elements_[i].is_copy() && elements_[i].index() == backing_index) { elements_[i].set_index(index); } } } return; } // Move the top element to the stored-to slot and replace it (the // top element) with a copy. elements_[index] = top; if (top.is_memory()) { // TODO(209): consider allocating the stored-to slot to the temp // register. Alternatively, allow copies to appear in any order // in the frame and lazily move the value down to the slot. FrameElement new_top = CopyElementAt(index); new_top.set_sync(); elements_[top_index] = new_top; // The sync state of the former top element is correct (synced). // Emit code to move the value down in the frame. __ movq(kScratchRegister, Operand(rsp, 0)); __ movq(Operand(rbp, fp_relative(index)), kScratchRegister); } else if (top.is_register()) { set_register_location(top.reg(), index); // The stored-to slot has the (unsynced) register reference and // the top element becomes a copy. The sync state of the top is // preserved. FrameElement new_top = CopyElementAt(index); if (top.is_synced()) { new_top.set_sync(); elements_[index].clear_sync(); } elements_[top_index] = new_top; } else { // The stored-to slot holds the same value as the top but // unsynced. (We do not have copies of constants yet.) ASSERT(top.is_constant()); elements_[index].clear_sync(); } } void VirtualFrame::MakeMergable() { for (int i = 0; i < element_count(); i++) { FrameElement element = elements_[i]; // In all cases we have to reset the number type information // to unknown for a mergable frame because of incoming back edges. if (element.is_constant() || element.is_copy()) { if (element.is_synced()) { // Just spill. elements_[i] = FrameElement::MemoryElement(TypeInfo::Unknown()); } else { // Allocate to a register. FrameElement backing_element; // Invalid if not a copy. if (element.is_copy()) { backing_element = elements_[element.index()]; } Result fresh = cgen()->allocator()->Allocate(); ASSERT(fresh.is_valid()); // A register was spilled if all were in use. elements_[i] = FrameElement::RegisterElement(fresh.reg(), FrameElement::NOT_SYNCED, TypeInfo::Unknown()); Use(fresh.reg(), i); // Emit a move. if (element.is_constant()) { __ Move(fresh.reg(), element.handle()); } else { ASSERT(element.is_copy()); // Copies are only backed by register or memory locations. if (backing_element.is_register()) { // The backing store may have been spilled by allocating, // but that's OK. If it was, the value is right where we // want it. if (!fresh.reg().is(backing_element.reg())) { __ movq(fresh.reg(), backing_element.reg()); } } else { ASSERT(backing_element.is_memory()); __ movq(fresh.reg(), Operand(rbp, fp_relative(element.index()))); } } } // No need to set the copied flag --- there are no copies. } else { // Clear the copy flag of non-constant, non-copy elements. // They cannot be copied because copies are not allowed. // The copy flag is not relied on before the end of this loop, // including when registers are spilled. elements_[i].clear_copied(); elements_[i].set_type_info(TypeInfo::Unknown()); } } } void VirtualFrame::MergeTo(VirtualFrame* expected) { Comment cmnt(masm(), "[ Merge frame"); // We should always be merging the code generator's current frame to an // expected frame. ASSERT(cgen()->frame() == this); // Adjust the stack pointer upward (toward the top of the virtual // frame) if necessary. if (stack_pointer_ < expected->stack_pointer_) { int difference = expected->stack_pointer_ - stack_pointer_; stack_pointer_ = expected->stack_pointer_; __ subq(rsp, Immediate(difference * kPointerSize)); } MergeMoveRegistersToMemory(expected); MergeMoveRegistersToRegisters(expected); MergeMoveMemoryToRegisters(expected); // Adjust the stack pointer downward if necessary. if (stack_pointer_ > expected->stack_pointer_) { int difference = stack_pointer_ - expected->stack_pointer_; stack_pointer_ = expected->stack_pointer_; __ addq(rsp, Immediate(difference * kPointerSize)); } // At this point, the frames should be identical. ASSERT(Equals(expected)); } void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) { ASSERT(stack_pointer_ >= expected->stack_pointer_); // Move registers, constants, and copies to memory. Perform moves // from the top downward in the frame in order to leave the backing // stores of copies in registers. for (int i = element_count() - 1; i >= 0; i--) { FrameElement target = expected->elements_[i]; if (target.is_register()) continue; // Handle registers later. if (target.is_memory()) { FrameElement source = elements_[i]; switch (source.type()) { case FrameElement::INVALID: // Not a legal merge move. UNREACHABLE(); break; case FrameElement::MEMORY: // Already in place. break; case FrameElement::REGISTER: Unuse(source.reg()); if (!source.is_synced()) { __ movq(Operand(rbp, fp_relative(i)), source.reg()); } break; case FrameElement::CONSTANT: if (!source.is_synced()) { __ Move(Operand(rbp, fp_relative(i)), source.handle()); } break; case FrameElement::COPY: if (!source.is_synced()) { int backing_index = source.index(); FrameElement backing_element = elements_[backing_index]; if (backing_element.is_memory()) { __ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index))); __ movq(Operand(rbp, fp_relative(i)), kScratchRegister); } else { ASSERT(backing_element.is_register()); __ movq(Operand(rbp, fp_relative(i)), backing_element.reg()); } } break; } } elements_[i] = target; } } void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) { // We have already done X-to-memory moves. ASSERT(stack_pointer_ >= expected->stack_pointer_); for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { // Move the right value into register i if it is currently in a register. int index = expected->register_location(i); int use_index = register_location(i); // Skip if register i is unused in the target or else if source is // not a register (this is not a register-to-register move). if (index == kIllegalIndex || !elements_[index].is_register()) continue; Register target = RegisterAllocator::ToRegister(i); Register source = elements_[index].reg(); if (index != use_index) { if (use_index == kIllegalIndex) { // Target is currently unused. // Copy contents of source from source to target. // Set frame element register to target. Use(target, index); Unuse(source); __ movq(target, source); } else { // Exchange contents of registers source and target. // Nothing except the register backing use_index has changed. elements_[use_index].set_reg(source); set_register_location(target, index); set_register_location(source, use_index); __ xchg(source, target); } } if (!elements_[index].is_synced() && expected->elements_[index].is_synced()) { __ movq(Operand(rbp, fp_relative(index)), target); } elements_[index] = expected->elements_[index]; } } void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame* expected) { // Move memory, constants, and copies to registers. This is the // final step and since it is not done from the bottom up, but in // register code order, we have special code to ensure that the backing // elements of copies are in their correct locations when we // encounter the copies. for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { int index = expected->register_location(i); if (index != kIllegalIndex) { FrameElement source = elements_[index]; FrameElement target = expected->elements_[index]; Register target_reg = RegisterAllocator::ToRegister(i); ASSERT(target.reg().is(target_reg)); switch (source.type()) { case FrameElement::INVALID: // Fall through. UNREACHABLE(); break; case FrameElement::REGISTER: ASSERT(source.Equals(target)); // Go to next iteration. Skips Use(target_reg) and syncing // below. It is safe to skip syncing because a target // register frame element would only be synced if all source // elements were. continue; break; case FrameElement::MEMORY: ASSERT(index <= stack_pointer_); __ movq(target_reg, Operand(rbp, fp_relative(index))); break; case FrameElement::CONSTANT: __ Move(target_reg, source.handle()); break; case FrameElement::COPY: { int backing_index = source.index(); FrameElement backing = elements_[backing_index]; ASSERT(backing.is_memory() || backing.is_register()); if (backing.is_memory()) { ASSERT(backing_index <= stack_pointer_); // Code optimization if backing store should also move // to a register: move backing store to its register first. if (expected->elements_[backing_index].is_register()) { FrameElement new_backing = expected->elements_[backing_index]; Register new_backing_reg = new_backing.reg(); ASSERT(!is_used(new_backing_reg)); elements_[backing_index] = new_backing; Use(new_backing_reg, backing_index); __ movq(new_backing_reg, Operand(rbp, fp_relative(backing_index))); __ movq(target_reg, new_backing_reg); } else { __ movq(target_reg, Operand(rbp, fp_relative(backing_index))); } } else { __ movq(target_reg, backing.reg()); } } } // Ensure the proper sync state. if (target.is_synced() && !source.is_synced()) { __ movq(Operand(rbp, fp_relative(index)), target_reg); } Use(target_reg, index); elements_[index] = target; } } } Result VirtualFrame::Pop() { FrameElement element = elements_.RemoveLast(); int index = element_count(); ASSERT(element.is_valid()); // Get number type information of the result. TypeInfo info; if (!element.is_copy()) { info = element.type_info(); } else { info = elements_[element.index()].type_info(); } bool pop_needed = (stack_pointer_ == index); if (pop_needed) { stack_pointer_--; if (element.is_memory()) { Result temp = cgen()->allocator()->Allocate(); ASSERT(temp.is_valid()); __ pop(temp.reg()); temp.set_type_info(info); return temp; } __ addq(rsp, Immediate(kPointerSize)); } ASSERT(!element.is_memory()); // The top element is a register, constant, or a copy. Unuse // registers and follow copies to their backing store. if (element.is_register()) { Unuse(element.reg()); } else if (element.is_copy()) { ASSERT(element.index() < index); index = element.index(); element = elements_[index]; } ASSERT(!element.is_copy()); // The element is memory, a register, or a constant. if (element.is_memory()) { // Memory elements could only be the backing store of a copy. // Allocate the original to a register. ASSERT(index <= stack_pointer_); Result temp = cgen()->allocator()->Allocate(); ASSERT(temp.is_valid()); Use(temp.reg(), index); FrameElement new_element = FrameElement::RegisterElement(temp.reg(), FrameElement::SYNCED, element.type_info()); // Preserve the copy flag on the element. if (element.is_copied()) new_element.set_copied(); elements_[index] = new_element; __ movq(temp.reg(), Operand(rbp, fp_relative(index))); return Result(temp.reg(), info); } else if (element.is_register()) { return Result(element.reg(), info); } else { ASSERT(element.is_constant()); return Result(element.handle()); } } Result VirtualFrame::RawCallStub(CodeStub* stub) { ASSERT(cgen()->HasValidEntryRegisters()); __ CallStub(stub); Result result = cgen()->allocator()->Allocate(rax); ASSERT(result.is_valid()); return result; } Result VirtualFrame::CallStub(CodeStub* stub, Result* arg) { PrepareForCall(0, 0); arg->ToRegister(rax); arg->Unuse(); return RawCallStub(stub); } Result VirtualFrame::CallStub(CodeStub* stub, Result* arg0, Result* arg1) { PrepareForCall(0, 0); if (arg0->is_register() && arg0->reg().is(rax)) { if (arg1->is_register() && arg1->reg().is(rdx)) { // Wrong registers. __ xchg(rax, rdx); } else { // Register rdx is free for arg0, which frees rax for arg1. arg0->ToRegister(rdx); arg1->ToRegister(rax); } } else { // Register rax is free for arg1, which guarantees rdx is free for // arg0. arg1->ToRegister(rax); arg0->ToRegister(rdx); } arg0->Unuse(); arg1->Unuse(); return RawCallStub(stub); } Result VirtualFrame::CallJSFunction(int arg_count) { Result function = Pop(); // InvokeFunction requires function in rdi. Move it in there. function.ToRegister(rdi); function.Unuse(); // +1 for receiver. PrepareForCall(arg_count + 1, arg_count + 1); ASSERT(cgen()->HasValidEntryRegisters()); ParameterCount count(arg_count); __ InvokeFunction(rdi, count, CALL_FUNCTION); RestoreContextRegister(); Result result = cgen()->allocator()->Allocate(rax); ASSERT(result.is_valid()); return result; } void VirtualFrame::SyncElementBelowStackPointer(int index) { // Emit code to write elements below the stack pointer to their // (already allocated) stack address. ASSERT(index <= stack_pointer_); FrameElement element = elements_[index]; ASSERT(!element.is_synced()); switch (element.type()) { case FrameElement::INVALID: break; case FrameElement::MEMORY: // This function should not be called with synced elements. // (memory elements are always synced). UNREACHABLE(); break; case FrameElement::REGISTER: __ movq(Operand(rbp, fp_relative(index)), element.reg()); break; case FrameElement::CONSTANT: __ Move(Operand(rbp, fp_relative(index)), element.handle()); break; case FrameElement::COPY: { int backing_index = element.index(); FrameElement backing_element = elements_[backing_index]; if (backing_element.is_memory()) { __ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index))); __ movq(Operand(rbp, fp_relative(index)), kScratchRegister); } else { ASSERT(backing_element.is_register()); __ movq(Operand(rbp, fp_relative(index)), backing_element.reg()); } break; } } elements_[index].set_sync(); } void VirtualFrame::SyncElementByPushing(int index) { // Sync an element of the frame that is just above the stack pointer // by pushing it. ASSERT(index == stack_pointer_ + 1); stack_pointer_++; FrameElement element = elements_[index]; switch (element.type()) { case FrameElement::INVALID: __ Push(Smi::FromInt(0)); break; case FrameElement::MEMORY: // No memory elements exist above the stack pointer. UNREACHABLE(); break; case FrameElement::REGISTER: __ push(element.reg()); break; case FrameElement::CONSTANT: __ Move(kScratchRegister, element.handle()); __ push(kScratchRegister); break; case FrameElement::COPY: { int backing_index = element.index(); FrameElement backing = elements_[backing_index]; ASSERT(backing.is_memory() || backing.is_register()); if (backing.is_memory()) { __ push(Operand(rbp, fp_relative(backing_index))); } else { __ push(backing.reg()); } break; } } elements_[index].set_sync(); } // Clear the dirty bits for the range of elements in // [min(stack_pointer_ + 1,begin), end]. void VirtualFrame::SyncRange(int begin, int end) { ASSERT(begin >= 0); ASSERT(end < element_count()); // Sync elements below the range if they have not been materialized // on the stack. int start = Min(begin, stack_pointer_ + 1); int end_or_stack_pointer = Min(stack_pointer_, end); // Emit normal push instructions for elements above stack pointer // and use mov instructions if we are below stack pointer. int i = start; while (i <= end_or_stack_pointer) { if (!elements_[i].is_synced()) SyncElementBelowStackPointer(i); i++; } while (i <= end) { SyncElementByPushing(i); i++; } } //------------------------------------------------------------------------------ // Virtual frame stub and IC calling functions. Result VirtualFrame::CallRuntime(const Runtime::Function* f, int arg_count) { PrepareForCall(arg_count, arg_count); ASSERT(cgen()->HasValidEntryRegisters()); __ CallRuntime(f, arg_count); Result result = cgen()->allocator()->Allocate(rax); ASSERT(result.is_valid()); return result; } Result VirtualFrame::CallRuntime(Runtime::FunctionId id, int arg_count) { PrepareForCall(arg_count, arg_count); ASSERT(cgen()->HasValidEntryRegisters()); __ CallRuntime(id, arg_count); Result result = cgen()->allocator()->Allocate(rax); ASSERT(result.is_valid()); return result; } #ifdef ENABLE_DEBUGGER_SUPPORT void VirtualFrame::DebugBreak() { PrepareForCall(0, 0); ASSERT(cgen()->HasValidEntryRegisters()); __ DebugBreak(); Result result = cgen()->allocator()->Allocate(rax); ASSERT(result.is_valid()); } #endif Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, int arg_count) { PrepareForCall(arg_count, arg_count); ASSERT(cgen()->HasValidEntryRegisters()); __ InvokeBuiltin(id, flag); Result result = cgen()->allocator()->Allocate(rax); ASSERT(result.is_valid()); return result; } Result VirtualFrame::RawCallCodeObject(Handle code, RelocInfo::Mode rmode) { ASSERT(cgen()->HasValidEntryRegisters()); __ Call(code, rmode); Result result = cgen()->allocator()->Allocate(rax); ASSERT(result.is_valid()); return result; } // This function assumes that the only results that could be in a_reg or b_reg // are a and b. Other results can be live, but must not be in a_reg or b_reg. void VirtualFrame::MoveResultsToRegisters(Result* a, Result* b, Register a_reg, Register b_reg) { ASSERT(!a_reg.is(b_reg)); // Assert that cgen()->allocator()->count(a_reg) is accounted for by a and b. ASSERT(cgen()->allocator()->count(a_reg) <= 2); ASSERT(cgen()->allocator()->count(a_reg) != 2 || a->reg().is(a_reg)); ASSERT(cgen()->allocator()->count(a_reg) != 2 || b->reg().is(a_reg)); ASSERT(cgen()->allocator()->count(a_reg) != 1 || (a->is_register() && a->reg().is(a_reg)) || (b->is_register() && b->reg().is(a_reg))); // Assert that cgen()->allocator()->count(b_reg) is accounted for by a and b. ASSERT(cgen()->allocator()->count(b_reg) <= 2); ASSERT(cgen()->allocator()->count(b_reg) != 2 || a->reg().is(b_reg)); ASSERT(cgen()->allocator()->count(b_reg) != 2 || b->reg().is(b_reg)); ASSERT(cgen()->allocator()->count(b_reg) != 1 || (a->is_register() && a->reg().is(b_reg)) || (b->is_register() && b->reg().is(b_reg))); if (a->is_register() && a->reg().is(a_reg)) { b->ToRegister(b_reg); } else if (!cgen()->allocator()->is_used(a_reg)) { a->ToRegister(a_reg); b->ToRegister(b_reg); } else if (cgen()->allocator()->is_used(b_reg)) { // a must be in b_reg, b in a_reg. __ xchg(a_reg, b_reg); // Results a and b will be invalidated, so it is ok if they are switched. } else { b->ToRegister(b_reg); a->ToRegister(a_reg); } a->Unuse(); b->Unuse(); } Result VirtualFrame::CallLoadIC(RelocInfo::Mode mode) { // Name and receiver are on the top of the frame. Both are dropped. // The IC expects name in rcx and receiver in rax. Handle ic(Isolate::Current()->builtins()->builtin( Builtins::kLoadIC_Initialize)); Result name = Pop(); Result receiver = Pop(); PrepareForCall(0, 0); MoveResultsToRegisters(&name, &receiver, rcx, rax); return RawCallCodeObject(ic, mode); } Result VirtualFrame::CallKeyedLoadIC(RelocInfo::Mode mode) { // Key and receiver are on top of the frame. Put them in rax and rdx. Result key = Pop(); Result receiver = Pop(); PrepareForCall(0, 0); MoveResultsToRegisters(&key, &receiver, rax, rdx); Handle ic(Isolate::Current()->builtins()->builtin( Builtins::kKeyedLoadIC_Initialize)); return RawCallCodeObject(ic, mode); } Result VirtualFrame::CallStoreIC(Handle name, bool is_contextual, StrictModeFlag strict_mode) { // Value and (if not contextual) receiver are on top of the frame. // The IC expects name in rcx, value in rax, and receiver in rdx. Handle ic(Isolate::Current()->builtins()->builtin( (strict_mode == kStrictMode) ? Builtins::kStoreIC_Initialize_Strict : Builtins::kStoreIC_Initialize)); Result value = Pop(); RelocInfo::Mode mode; if (is_contextual) { PrepareForCall(0, 0); value.ToRegister(rax); __ movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); value.Unuse(); mode = RelocInfo::CODE_TARGET_CONTEXT; } else { Result receiver = Pop(); PrepareForCall(0, 0); MoveResultsToRegisters(&value, &receiver, rax, rdx); mode = RelocInfo::CODE_TARGET; } __ Move(rcx, name); return RawCallCodeObject(ic, mode); } Result VirtualFrame::CallKeyedStoreIC(StrictModeFlag strict_mode) { // Value, key, and receiver are on the top of the frame. The IC // expects value in rax, key in rcx, and receiver in rdx. Result value = Pop(); Result key = Pop(); Result receiver = Pop(); PrepareForCall(0, 0); if (!cgen()->allocator()->is_used(rax) || (value.is_register() && value.reg().is(rax))) { if (!cgen()->allocator()->is_used(rax)) { value.ToRegister(rax); } MoveResultsToRegisters(&key, &receiver, rcx, rdx); value.Unuse(); } else if (!cgen()->allocator()->is_used(rcx) || (key.is_register() && key.reg().is(rcx))) { if (!cgen()->allocator()->is_used(rcx)) { key.ToRegister(rcx); } MoveResultsToRegisters(&value, &receiver, rax, rdx); key.Unuse(); } else if (!cgen()->allocator()->is_used(rdx) || (receiver.is_register() && receiver.reg().is(rdx))) { if (!cgen()->allocator()->is_used(rdx)) { receiver.ToRegister(rdx); } MoveResultsToRegisters(&key, &value, rcx, rax); receiver.Unuse(); } else { // All three registers are used, and no value is in the correct place. // We have one of the two circular permutations of rax, rcx, rdx. ASSERT(value.is_register()); if (value.reg().is(rcx)) { __ xchg(rax, rdx); __ xchg(rax, rcx); } else { __ xchg(rax, rcx); __ xchg(rax, rdx); } value.Unuse(); key.Unuse(); receiver.Unuse(); } Handle ic(Isolate::Current()->builtins()->builtin( (strict_mode == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict : Builtins::kKeyedStoreIC_Initialize)); return RawCallCodeObject(ic, RelocInfo::CODE_TARGET); } Result VirtualFrame::CallCallIC(RelocInfo::Mode mode, int arg_count, int loop_nesting) { // Function name, arguments, and receiver are found on top of the frame // and dropped by the call. The IC expects the name in rcx and the rest // on the stack, and drops them all. InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP; Handle ic = ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop); Result name = Pop(); // Spill args, receiver, and function. The call will drop args and // receiver. PrepareForCall(arg_count + 1, arg_count + 1); name.ToRegister(rcx); name.Unuse(); return RawCallCodeObject(ic, mode); } Result VirtualFrame::CallKeyedCallIC(RelocInfo::Mode mode, int arg_count, int loop_nesting) { // Function name, arguments, and receiver are found on top of the frame // and dropped by the call. The IC expects the name in rcx and the rest // on the stack, and drops them all. InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP; Handle ic = ISOLATE->stub_cache()->ComputeKeyedCallInitialize(arg_count, in_loop); Result name = Pop(); // Spill args, receiver, and function. The call will drop args and // receiver. PrepareForCall(arg_count + 1, arg_count + 1); name.ToRegister(rcx); name.Unuse(); return RawCallCodeObject(ic, mode); } Result VirtualFrame::CallConstructor(int arg_count) { // Arguments, receiver, and function are on top of the frame. The // IC expects arg count in rax, function in rdi, and the arguments // and receiver on the stack. Handle ic(Isolate::Current()->builtins()->builtin( Builtins::kJSConstructCall)); // Duplicate the function before preparing the frame. PushElementAt(arg_count); Result function = Pop(); PrepareForCall(arg_count + 1, arg_count + 1); // Spill function and args. function.ToRegister(rdi); // Constructors are called with the number of arguments in register // rax for now. Another option would be to have separate construct // call trampolines per different arguments counts encountered. Result num_args = cgen()->allocator()->Allocate(rax); ASSERT(num_args.is_valid()); __ Set(num_args.reg(), arg_count); function.Unuse(); num_args.Unuse(); return RawCallCodeObject(ic, RelocInfo::CONSTRUCT_CALL); } void VirtualFrame::PushTryHandler(HandlerType type) { ASSERT(cgen()->HasValidEntryRegisters()); // Grow the expression stack by handler size less one (the return // address is already pushed by a call instruction). Adjust(kHandlerSize - 1); __ PushTryHandler(IN_JAVASCRIPT, type); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64