/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Patrick Pekczynski * * Contributing authors: * Christian Schulte * Guido Tack * * Copyright: * Patrick Pekczynski, 2005 * Christian Schulte, 2009 * Guido Tack, 2009 * * Last modified: * $Date: 2010-07-15 01:46:18 +1000 (Thu, 15 Jul 2010) $ by $Author: schulte $ * $Revision: 11192 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ namespace Gecode { namespace Int { namespace GCC { template forceinline Val::Val(Home home, ViewArray& x0, ViewArray& k0) : Propagator(home), x(x0), k(k0){ x.subscribe(home, *this, PC_INT_VAL); k.subscribe(home, *this, PC_INT_VAL); } template forceinline Val::Val(Space& home, bool share, Val& p) : Propagator(home,share,p) { x.update(home,share, p.x); k.update(home,share, p.k); } template forceinline size_t Val::dispose(Space& home) { x.cancel(home,*this, PC_INT_VAL); k.cancel(home,*this, PC_INT_VAL); (void) Propagator::dispose(home); return sizeof(*this); } template Actor* Val::copy(Space& home, bool share) { return new (home) Val(home,share,*this); } template PropCost Val::cost(const Space&, const ModEventDelta&) const { /* * Complexity depends on the time needed for value lookup in \a k * which is O(n log n). */ return PropCost::linear(PropCost::HI,x.size()); } template ExecStatus prop_val(Space& home, Propagator& p, ViewArray& x, ViewArray& k) { assert(x.size() > 0); Region r(home); // count[i] denotes how often value k[i].card() occurs in x int* count = r.alloc(k.size()); // initialization int sum_min = 0; int removed = 0; for (int i = k.size(); i--; ) { removed += k[i].counter(); sum_min += k[i].min(); count[i] = 0; } // less than or equal than the total number of free variables // to satisfy the required occurences for (int i = k.size(); i--; ) GECODE_ME_CHECK(k[i].lq(home, x.size()+removed-(sum_min - k[i].min()))); // number of unassigned views int non = x.size(); for (int i = x.size(); i--; ) if (x[i].assigned()) { int idx; if (!lookupValue(k,x[i].val(),idx)) { return ES_FAILED; } count[idx]++; non--; } // check for subsumption if (non == 0) { for (int i = k.size(); i--; ) GECODE_ME_CHECK((k[i].eq(home, count[i] + k[i].counter()))); return home.ES_SUBSUMED(p); } // total number of unsatisfied miminum occurences int req = 0; // number of values whose min requirements are not yet met int n_r = 0; // if only one value is unsatisified single holds the index of that value int single = -1; // total number of assigned views wrt. the original probem size int t_noa = 0; for (int i = k.size(); i--; ) { int ci = count[i] + k[i].counter(); t_noa += ci; if (ci == 0) { // this works req += k[i].min(); n_r++; single = i; } // number of unassigned views cannot satisfy // the required minimum occurence if (req > non) { return ES_FAILED; } } // if only one unsatisfied occurences is left if ((req == non) && (n_r == 1)) { // This works as the x are not shared! for (int i = x.size(); i--; ) { // try to assign it if (!x[i].assigned()) { GECODE_ME_CHECK(x[i].eq(home, k[single].card())); assert((single >= 0) && (single < k.size())); count[single]++; } } assert((single >= 0) && (single < k.size())); for (int i = k.size(); i--; ) GECODE_ME_CHECK(k[i].eq(home, count[i] + k[i].counter())); return home.ES_SUBSUMED(p); } // Bitset for indexes that can be removed Support::BitSet rem(r,static_cast(k.size())); for (int i = k.size(); i--; ) { int ci = count[i] + k[i].counter(); if (ci == k[i].max()) { assert(!rem.get(i)); rem.set(static_cast(i)); k[i].counter(ci); // the solution contains ci occurences of value k[i].card(); GECODE_ME_CHECK(k[i].eq(home, ci)); } else { if (ci > k[i].max()) { return ES_FAILED; } // in case of variable cardinalities if (Card::propagate) { GECODE_ME_CHECK(k[i].gq(home, ci)); int occupied = t_noa - ci; GECODE_ME_CHECK(k[i].lq(home, x.size() + removed - occupied)); } } // reset counter count[i] = 0; } // reduce the problem size { int n_x = x.size(); for (int i = n_x; i--; ) { if (x[i].assigned()) { int idx; if (!lookupValue(k,x[i].val(),idx)) { return ES_FAILED; } if (rem.get(static_cast(idx))) x[i]=x[--n_x]; } } x.size(n_x); } // remove values { // Values to prune int* p = r.alloc(k.size()); // Number of values to prune int n_p = 0; for (Iter::Values::BitSet > i(rem); i(); ++i) p[n_p++] = k[i.val()].card(); Support::quicksort(p,n_p); for (int i = x.size(); i--;) { Iter::Values::Array pi(p,n_p); GECODE_ME_CHECK(x[i].minus_v(home, pi, false)); } } { bool all_assigned = true; for (int i = x.size(); i--; ) { if (x[i].assigned()) { int idx; if (!lookupValue(k,x[i].val(),idx)) { return ES_FAILED; } count[idx]++; } else { all_assigned = false; } } if (all_assigned) { for (int i = k.size(); i--; ) GECODE_ME_CHECK((k[i].eq(home, count[i] + k[i].counter()))); return home.ES_SUBSUMED(p); } } if (Card::propagate) { // check again consistency of cardinalities int reqmin = 0; int allmax = 0; for (int i = k.size(); i--; ) { if (k[i].counter() > k[i].max()) { return ES_FAILED; } allmax += k[i].max() - k[i].counter(); if (k[i].counter() < k[i].min()) reqmin += k[i].min() - k[i].counter(); GECODE_ME_CHECK((k[i].lq(home, x.size()+k[i].counter()))); } if ((x.size() < reqmin) || (allmax < x.size())) { return ES_FAILED; } } return ES_NOFIX; } template ExecStatus Val::propagate(Space& home, const ModEventDelta&) { return prop_val(home, *this, x, k); } template ExecStatus Val::post(Home home, ViewArray& x, ViewArray& k) { GECODE_ES_CHECK((postSideConstraints(home,x,k))); if (isDistinct(home,x,k)) return Distinct::Val::post(home,x); (void) new (home) Val(home,x,k); return ES_OK; } }}} // STATISTICS: int-prop