// Copyright (C) 2006 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #include <dlib/matrix.h> #include <sstream> #include <string> #include <cstdlib> #include <ctime> #include <vector> #include "../stl_checked.h" #include "../array.h" #include "../rand.h" #include "checkerboard.h" #include <dlib/statistics.h> #include "tester.h" #include <dlib/svm_threaded.h> namespace { using namespace test; using namespace dlib; using namespace std; logger dlog("test.svm"); // ---------------------------------------------------------------------------------------- void test_clutering ( ) { dlog << LINFO << " being test_clutering()"; // Here we declare that our samples will be 2 dimensional column vectors. typedef matrix<double,2,1> sample_type; // Now we are making a typedef for the kind of kernel we want to use. I picked the // radial basis kernel because it only has one parameter and generally gives good // results without much fiddling. typedef radial_basis_kernel<sample_type> kernel_type; // Here we declare an instance of the kcentroid object. The first argument to the constructor // is the kernel we wish to use. The second is a parameter that determines the numerical // accuracy with which the object will perform part of the learning algorithm. Generally // smaller values give better results but cause the algorithm to run slower. You just have // to play with it to decide what balance of speed and accuracy is right for your problem. // Here we have set it to 0.01. kcentroid<kernel_type> kc(kernel_type(0.1),0.01); // Now we make an instance of the kkmeans object and tell it to use kcentroid objects // that are configured with the parameters from the kc object we defined above. kkmeans<kernel_type> test(kc); std::vector<sample_type> samples; std::vector<sample_type> initial_centers; sample_type m; dlib::rand rnd; print_spinner(); // we will make 50 points from each class const long num = 50; // make some samples near the origin double radius = 0.5; for (long i = 0; i < num; ++i) { double sign = 1; if (rnd.get_random_double() < 0.5) sign = -1; m(0) = 2*radius*rnd.get_random_double()-radius; m(1) = sign*sqrt(radius*radius - m(0)*m(0)); // add this sample to our set of samples we will run k-means samples.push_back(m); } // make some samples in a circle around the origin but far away radius = 10.0; for (long i = 0; i < num; ++i) { double sign = 1; if (rnd.get_random_double() < 0.5) sign = -1; m(0) = 2*radius*rnd.get_random_double()-radius; m(1) = sign*sqrt(radius*radius - m(0)*m(0)); // add this sample to our set of samples we will run k-means samples.push_back(m); } // make some samples in a circle around the point (25,25) radius = 4.0; for (long i = 0; i < num; ++i) { double sign = 1; if (rnd.get_random_double() < 0.5) sign = -1; m(0) = 2*radius*rnd.get_random_double()-radius; m(1) = sign*sqrt(radius*radius - m(0)*m(0)); // translate this point away from the origin m(0) += 25; m(1) += 25; // add this sample to our set of samples we will run k-means samples.push_back(m); } print_spinner(); // tell the kkmeans object we made that we want to run k-means with k set to 3. // (i.e. we want 3 clusters) test.set_number_of_centers(3); // You need to pick some initial centers for the k-means algorithm. So here // we will use the dlib::pick_initial_centers() function which tries to find // n points that are far apart (basically). pick_initial_centers(3, initial_centers, samples, test.get_kernel()); print_spinner(); // now run the k-means algorithm on our set of samples. test.train(samples,initial_centers); print_spinner(); const unsigned long class1 = test(samples[0]); const unsigned long class2 = test(samples[num]); const unsigned long class3 = test(samples[2*num]); // now loop over all our samples and print out their predicted class. In this example // all points are correctly identified. for (unsigned long i = 0; i < samples.size()/3; ++i) { DLIB_TEST(test(samples[i]) == class1); DLIB_TEST(test(samples[i+num]) == class2); DLIB_TEST(test(samples[i+2*num]) == class3); } dlog << LINFO << " end test_clutering()"; } // ---------------------------------------------------------------------------------------- // Here is the sinc function we will be trying to learn with the krls // object. double sinc(double x) { if (x == 0) return 1; return sin(x)/x; } void test_regression ( ) { dlog << LINFO << " being test_regression()"; // Here we declare that our samples will be 1 dimensional column vectors. The reason for // using a matrix here is that in general you can use N dimensional vectors as inputs to the // krls object. But here we only have 1 dimension to make the example simple. typedef matrix<double,1,1> sample_type; // Now we are making a typedef for the kind of kernel we want to use. I picked the // radial basis kernel because it only has one parameter and generally gives good // results without much fiddling. typedef radial_basis_kernel<sample_type> kernel_type; // Here we declare an instance of the krls object. The first argument to the constructor // is the kernel we wish to use. The second is a parameter that determines the numerical // accuracy with which the object will perform part of the regression algorithm. Generally // smaller values give better results but cause the algorithm to run slower. You just have // to play with it to decide what balance of speed and accuracy is right for your problem. // Here we have set it to 0.001. krls<kernel_type> test(kernel_type(0.1),0.001); rvm_regression_trainer<kernel_type> rvm_test; rvm_test.set_kernel(test.get_kernel()); krr_trainer<kernel_type> krr_test; krr_test.set_kernel(test.get_kernel()); svr_trainer<kernel_type> svr_test; svr_test.set_kernel(test.get_kernel()); svr_test.set_epsilon_insensitivity(0.0001); svr_test.set_c(10); rbf_network_trainer<kernel_type> rbf_test; rbf_test.set_kernel(test.get_kernel()); rbf_test.set_num_centers(13); print_spinner(); std::vector<sample_type> samples; std::vector<sample_type> samples2; std::vector<double> labels; std::vector<double> labels2; // now we train our object on a few samples of the sinc function. sample_type m; for (double x = -10; x <= 5; x += 0.6) { m(0) = x; test.train(m, sinc(x)); samples.push_back(m); samples2.push_back(m); labels.push_back(sinc(x)); labels2.push_back(2); } print_spinner(); decision_function<kernel_type> test2 = rvm_test.train(samples, labels); print_spinner(); decision_function<kernel_type> test3 = rbf_test.train(samples, labels); print_spinner(); decision_function<kernel_type> test4 = krr_test.train(samples, labels); print_spinner(); decision_function<kernel_type> test5 = svr_test.train(samples, labels); print_spinner(); // now we output the value of the sinc function for a few test points as well as the // value predicted by krls object. m(0) = 2.5; dlog << LDEBUG << "krls: " << sinc(m(0)) << " " << test(m); DLIB_TEST(abs(sinc(m(0)) - test(m)) < 0.01); m(0) = 0.1; dlog << LDEBUG << "krls: " << sinc(m(0)) << " " << test(m); DLIB_TEST(abs(sinc(m(0)) - test(m)) < 0.01); m(0) = -4; dlog << LDEBUG << "krls: " << sinc(m(0)) << " " << test(m); DLIB_TEST(abs(sinc(m(0)) - test(m)) < 0.01); m(0) = 5.0; dlog << LDEBUG << "krls: " << sinc(m(0)) << " " << test(m); DLIB_TEST(abs(sinc(m(0)) - test(m)) < 0.01); m(0) = 2.5; dlog << LDEBUG << "rvm: " << sinc(m(0)) << " " << test2(m); DLIB_TEST(abs(sinc(m(0)) - test2(m)) < 0.01); m(0) = 0.1; dlog << LDEBUG << "rvm: " << sinc(m(0)) << " " << test2(m); DLIB_TEST(abs(sinc(m(0)) - test2(m)) < 0.01); m(0) = -4; dlog << LDEBUG << "rvm: " << sinc(m(0)) << " " << test2(m); DLIB_TEST(abs(sinc(m(0)) - test2(m)) < 0.01); m(0) = 5.0; dlog << LDEBUG << "rvm: " << sinc(m(0)) << " " << test2(m); DLIB_TEST(abs(sinc(m(0)) - test2(m)) < 0.01); m(0) = 2.5; dlog << LDEBUG << "rbf: " << sinc(m(0)) << " " << test3(m); DLIB_TEST(abs(sinc(m(0)) - test3(m)) < 0.01); m(0) = 0.1; dlog << LDEBUG << "rbf: " << sinc(m(0)) << " " << test3(m); DLIB_TEST(abs(sinc(m(0)) - test3(m)) < 0.01); m(0) = -4; dlog << LDEBUG << "rbf: " << sinc(m(0)) << " " << test3(m); DLIB_TEST(abs(sinc(m(0)) - test3(m)) < 0.01); m(0) = 5.0; dlog << LDEBUG << "rbf: " << sinc(m(0)) << " " << test3(m); DLIB_TEST(abs(sinc(m(0)) - test3(m)) < 0.01); m(0) = 2.5; dlog << LDEBUG << "krr: " << sinc(m(0)) << " " << test4(m); DLIB_TEST(abs(sinc(m(0)) - test4(m)) < 0.01); m(0) = 0.1; dlog << LDEBUG << "krr: " << sinc(m(0)) << " " << test4(m); DLIB_TEST(abs(sinc(m(0)) - test4(m)) < 0.01); m(0) = -4; dlog << LDEBUG << "krr: " << sinc(m(0)) << " " << test4(m); DLIB_TEST(abs(sinc(m(0)) - test4(m)) < 0.01); m(0) = 5.0; dlog << LDEBUG << "krr: " << sinc(m(0)) << " " << test4(m); DLIB_TEST(abs(sinc(m(0)) - test4(m)) < 0.01); m(0) = 2.5; dlog << LDEBUG << "svr: " << sinc(m(0)) << " " << test5(m); DLIB_TEST(abs(sinc(m(0)) - test5(m)) < 0.01); m(0) = 0.1; dlog << LDEBUG << "svr: " << sinc(m(0)) << " " << test5(m); DLIB_TEST(abs(sinc(m(0)) - test5(m)) < 0.01); m(0) = -4; dlog << LDEBUG << "svr: " << sinc(m(0)) << " " << test5(m); DLIB_TEST(abs(sinc(m(0)) - test5(m)) < 0.01); m(0) = 5.0; dlog << LDEBUG << "svr: " << sinc(m(0)) << " " << test5(m); DLIB_TEST(abs(sinc(m(0)) - test5(m)) < 0.01); randomize_samples(samples, labels); dlog << LINFO << "KRR MSE and R-squared: "<< cross_validate_regression_trainer(krr_test, samples, labels, 6); dlog << LINFO << "SVR MSE and R-squared: "<< cross_validate_regression_trainer(svr_test, samples, labels, 6); matrix<double,1,2> cv = cross_validate_regression_trainer(krr_test, samples, labels, 6); DLIB_TEST(cv(0) < 1e-4); DLIB_TEST(cv(1) > 0.99); cv = cross_validate_regression_trainer(svr_test, samples, labels, 6); DLIB_TEST(cv(0) < 1e-4); DLIB_TEST(cv(1) > 0.99); randomize_samples(samples2, labels2); dlog << LINFO << "KRR MSE and R-squared: "<< cross_validate_regression_trainer(krr_test, samples2, labels2, 6); dlog << LINFO << "SVR MSE and R-squared: "<< cross_validate_regression_trainer(svr_test, samples2, labels2, 6); cv = cross_validate_regression_trainer(krr_test, samples2, labels2, 6); DLIB_TEST(cv(0) < 1e-4); cv = cross_validate_regression_trainer(svr_test, samples2, labels2, 6); DLIB_TEST(cv(0) < 1e-4); dlog << LINFO << " end test_regression()"; } // ---------------------------------------------------------------------------------------- void test_anomaly_detection ( ) { dlog << LINFO << " begin test_anomaly_detection()"; // Here we declare that our samples will be 2 dimensional column vectors. typedef matrix<double,2,1> sample_type; // Now we are making a typedef for the kind of kernel we want to use. I picked the // radial basis kernel because it only has one parameter and generally gives good // results without much fiddling. typedef radial_basis_kernel<sample_type> kernel_type; // Here we declare an instance of the kcentroid object. The first argument to the constructor // is the kernel we wish to use. The second is a parameter that determines the numerical // accuracy with which the object will perform part of the learning algorithm. Generally // smaller values give better results but cause the algorithm to run slower. You just have // to play with it to decide what balance of speed and accuracy is right for your problem. // Here we have set it to 0.01. kcentroid<kernel_type> test(kernel_type(0.1),0.01); svm_one_class_trainer<kernel_type> one_class_trainer; one_class_trainer.set_nu(0.4); one_class_trainer.set_kernel(kernel_type(0.2)); std::vector<sample_type> samples; // now we train our object on a few samples of the sinc function. sample_type m; for (double x = -15; x <= 8; x += 1) { m(0) = x; m(1) = sinc(x); test.train(m); samples.push_back(m); } decision_function<kernel_type> df = one_class_trainer.train(samples); running_stats<double> rs; // Now lets output the distance from the centroid to some points that are from the sinc function. // These numbers should all be similar. We will also calculate the statistics of these numbers // by accumulating them into the running_stats object called rs. This will let us easily // find the mean and standard deviation of the distances for use below. dlog << LDEBUG << "Points that are on the sinc function:\n"; m(0) = -1.5; m(1) = sinc(m(0)); dlog << LDEBUG << " " << test(m); rs.add(test(m)); m(0) = -1.5; m(1) = sinc(m(0)); dlog << LDEBUG << " " << test(m); rs.add(test(m)); m(0) = -0; m(1) = sinc(m(0)); dlog << LDEBUG << " " << test(m); rs.add(test(m)); m(0) = -0.5; m(1) = sinc(m(0)); dlog << LDEBUG << " " << test(m); rs.add(test(m)); m(0) = -4.1; m(1) = sinc(m(0)); dlog << LDEBUG << " " << test(m); rs.add(test(m)); m(0) = -1.5; m(1) = sinc(m(0)); dlog << LDEBUG << " " << test(m); rs.add(test(m)); m(0) = -0.5; m(1) = sinc(m(0)); dlog << LDEBUG << " " << test(m); rs.add(test(m)); m(0) = -1.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(rs.scale(test(m)) < 2, rs.scale(test(m))); m(0) = -1.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(rs.scale(test(m)) < 2, rs.scale(test(m))); m(0) = -0; m(1) = sinc(m(0)); DLIB_TEST_MSG(rs.scale(test(m)) < 2, rs.scale(test(m))); m(0) = -0.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(rs.scale(test(m)) < 2, rs.scale(test(m))); m(0) = -4.1; m(1) = sinc(m(0)); DLIB_TEST_MSG(rs.scale(test(m)) < 2, rs.scale(test(m))); m(0) = -1.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(rs.scale(test(m)) < 2, rs.scale(test(m))); m(0) = -0.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(rs.scale(test(m)) < 2, rs.scale(test(m))); const double thresh = 0.01; m(0) = -1.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(df(m)+thresh > 0, df(m)); m(0) = -1.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(df(m)+thresh > 0, df(m)); m(0) = -0; m(1) = sinc(m(0)); DLIB_TEST_MSG(df(m)+thresh > 0, df(m)); m(0) = -0.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(df(m)+thresh > 0, df(m)); m(0) = -4.1; m(1) = sinc(m(0)); DLIB_TEST_MSG(df(m)+thresh > 0, df(m)); m(0) = -1.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(df(m)+thresh > 0, df(m)); m(0) = -0.5; m(1) = sinc(m(0)); DLIB_TEST_MSG(df(m)+thresh > 0, df(m)); dlog << LDEBUG; // Lets output the distance from the centroid to some points that are NOT from the sinc function. // These numbers should all be significantly bigger than previous set of numbers. We will also // use the rs.scale() function to find out how many standard deviations they are away from the // mean of the test points from the sinc function. So in this case our criterion for "significantly bigger" // is > 3 or 4 standard deviations away from the above points that actually are on the sinc function. dlog << LDEBUG << "Points that are NOT on the sinc function:\n"; m(0) = -1.5; m(1) = sinc(m(0))+4; dlog << LDEBUG << " " << test(m) << " is " << rs.scale(test(m)) << " standard deviations from sinc."; DLIB_TEST_MSG(rs.scale(test(m)) > 6, rs.scale(test(m))); DLIB_TEST_MSG(df(m) + thresh < 0, df(m)); m(0) = -1.5; m(1) = sinc(m(0))+3; dlog << LDEBUG << " " << test(m) << " is " << rs.scale(test(m)) << " standard deviations from sinc."; DLIB_TEST_MSG(rs.scale(test(m)) > 6, rs.scale(test(m))); DLIB_TEST_MSG(df(m) + thresh < 0, df(m)); m(0) = -0; m(1) = -sinc(m(0)); dlog << LDEBUG << " " << test(m) << " is " << rs.scale(test(m)) << " standard deviations from sinc."; DLIB_TEST_MSG(rs.scale(test(m)) > 6, rs.scale(test(m))); DLIB_TEST_MSG(df(m) + thresh < 0, df(m)); m(0) = -0.5; m(1) = -sinc(m(0)); dlog << LDEBUG << " " << test(m) << " is " << rs.scale(test(m)) << " standard deviations from sinc."; DLIB_TEST_MSG(rs.scale(test(m)) > 6, rs.scale(test(m))); DLIB_TEST_MSG(df(m) + thresh < 0, df(m)); m(0) = -4.1; m(1) = sinc(m(0))+2; dlog << LDEBUG << " " << test(m) << " is " << rs.scale(test(m)) << " standard deviations from sinc."; DLIB_TEST_MSG(rs.scale(test(m)) > 6, rs.scale(test(m))); DLIB_TEST_MSG(df(m) + thresh < 0, df(m)); m(0) = -1.5; m(1) = sinc(m(0))+0.9; dlog << LDEBUG << " " << test(m) << " is " << rs.scale(test(m)) << " standard deviations from sinc."; DLIB_TEST_MSG(rs.scale(test(m)) > 6, rs.scale(test(m))); DLIB_TEST_MSG(df(m) + thresh < 0, df(m)); m(0) = -0.5; m(1) = sinc(m(0))+1; dlog << LDEBUG << " " << test(m) << " is " << rs.scale(test(m)) << " standard deviations from sinc."; DLIB_TEST_MSG(rs.scale(test(m)) > 6, rs.scale(test(m))); DLIB_TEST_MSG(df(m) + thresh < 0, df(m)); dlog << LINFO << " end test_anomaly_detection()"; } // ---------------------------------------------------------------------------------------- void unittest_binary_classification ( ) /*! ensures - runs tests on the svm stuff compliance with the specs !*/ { dlog << LINFO << " begin unittest_binary_classification()"; print_spinner(); typedef double scalar_type; typedef matrix<scalar_type,2,1> sample_type; std::vector<sample_type> x; std::vector<matrix<double,0,1> > x_linearized; std::vector<scalar_type> y; get_checkerboard_problem(x,y, 300, 2); const scalar_type gamma = 1; typedef radial_basis_kernel<sample_type> kernel_type; rbf_network_trainer<kernel_type> rbf_trainer; rbf_trainer.set_kernel(kernel_type(gamma)); rbf_trainer.set_num_centers(100); rvm_trainer<kernel_type> rvm_trainer; rvm_trainer.set_kernel(kernel_type(gamma)); krr_trainer<kernel_type> krr_trainer; krr_trainer.use_classification_loss_for_loo_cv(); krr_trainer.set_kernel(kernel_type(gamma)); svm_pegasos<kernel_type> pegasos_trainer; pegasos_trainer.set_kernel(kernel_type(gamma)); pegasos_trainer.set_lambda(0.00001); svm_c_ekm_trainer<kernel_type> ocas_ekm_trainer; ocas_ekm_trainer.set_kernel(kernel_type(gamma)); ocas_ekm_trainer.set_c(100000); svm_nu_trainer<kernel_type> trainer; trainer.set_kernel(kernel_type(gamma)); trainer.set_nu(0.05); svm_c_trainer<kernel_type> c_trainer; c_trainer.set_kernel(kernel_type(gamma)); c_trainer.set_c(100); svm_c_linear_trainer<linear_kernel<matrix<double,0,1> > > lin_trainer; lin_trainer.set_c(100000); // use an ekm to linearize this dataset so we can use it with the lin_trainer empirical_kernel_map<kernel_type> ekm; ekm.load(kernel_type(gamma), x); for (unsigned long i = 0; i < x.size(); ++i) x_linearized.push_back(ekm.project(x[i])); print_spinner(); matrix<scalar_type> rvm_cv = cross_validate_trainer_threaded(rvm_trainer, x,y, 4, 2); print_spinner(); matrix<scalar_type> krr_cv = cross_validate_trainer_threaded(krr_trainer, x,y, 4, 2); print_spinner(); matrix<scalar_type> svm_cv = cross_validate_trainer(trainer, x,y, 4); print_spinner(); matrix<scalar_type> svm_c_cv = cross_validate_trainer(c_trainer, x,y, 4); print_spinner(); matrix<scalar_type> rbf_cv = cross_validate_trainer_threaded(rbf_trainer, x,y, 10, 2); print_spinner(); matrix<scalar_type> lin_cv = cross_validate_trainer_threaded(lin_trainer, x_linearized, y, 4, 2); print_spinner(); matrix<scalar_type> ocas_ekm_cv = cross_validate_trainer_threaded(ocas_ekm_trainer, x, y, 4, 2); print_spinner(); ocas_ekm_trainer.set_basis(randomly_subsample(x, 300)); matrix<scalar_type> ocas_ekm_cv2 = cross_validate_trainer_threaded(ocas_ekm_trainer, x, y, 4, 2); print_spinner(); matrix<scalar_type> peg_cv = cross_validate_trainer_threaded(batch(pegasos_trainer,1.0), x,y, 4, 2); print_spinner(); matrix<scalar_type> peg_c_cv = cross_validate_trainer_threaded(batch_cached(pegasos_trainer,1.0), x,y, 4, 2); print_spinner(); dlog << LDEBUG << "rvm cv: " << rvm_cv; dlog << LDEBUG << "krr cv: " << krr_cv; dlog << LDEBUG << "nu-svm cv: " << svm_cv; dlog << LDEBUG << "C-svm cv: " << svm_c_cv; dlog << LDEBUG << "rbf cv: " << rbf_cv; dlog << LDEBUG << "lin cv: " << lin_cv; dlog << LDEBUG << "ocas_ekm cv: " << ocas_ekm_cv; dlog << LDEBUG << "ocas_ekm cv2: " << ocas_ekm_cv2; dlog << LDEBUG << "peg cv: " << peg_cv; dlog << LDEBUG << "peg cached cv: " << peg_c_cv; // make sure the cached version of pegasos computes the same result DLIB_TEST_MSG(sum(abs(peg_cv - peg_c_cv)) < std::sqrt(std::numeric_limits<double>::epsilon()), sum(abs(peg_cv - peg_c_cv)) << " \n" << peg_cv << peg_c_cv ); DLIB_TEST_MSG(mean(rvm_cv) > 0.9, rvm_cv); DLIB_TEST_MSG(mean(krr_cv) > 0.9, krr_cv); DLIB_TEST_MSG(mean(svm_cv) > 0.9, svm_cv); DLIB_TEST_MSG(mean(svm_c_cv) > 0.9, svm_c_cv); DLIB_TEST_MSG(mean(rbf_cv) > 0.9, rbf_cv); DLIB_TEST_MSG(mean(lin_cv) > 0.9, lin_cv); DLIB_TEST_MSG(mean(peg_cv) > 0.9, peg_cv); DLIB_TEST_MSG(mean(peg_c_cv) > 0.9, peg_c_cv); DLIB_TEST_MSG(mean(ocas_ekm_cv) > 0.9, ocas_ekm_cv); DLIB_TEST_MSG(mean(ocas_ekm_cv2) > 0.9, ocas_ekm_cv2); const long num_sv = trainer.train(x,y).basis_vectors.size(); print_spinner(); const long num_rv = rvm_trainer.train(x,y).basis_vectors.size(); print_spinner(); dlog << LDEBUG << "num sv: " << num_sv; dlog << LDEBUG << "num rv: " << num_rv; print_spinner(); ocas_ekm_trainer.clear_basis(); const long num_bv = ocas_ekm_trainer.train(x,y).basis_vectors.size(); dlog << LDEBUG << "num ekm bv: " << num_bv; DLIB_TEST(num_rv <= 17); DLIB_TEST_MSG(num_sv <= 45, num_sv); DLIB_TEST_MSG(num_bv <= 45, num_bv); decision_function<kernel_type> df = reduced2(trainer, 19).train(x,y); print_spinner(); matrix<scalar_type> svm_reduced_error = test_binary_decision_function(df, x, y); print_spinner(); dlog << LDEBUG << "svm reduced test error: " << svm_reduced_error; dlog << LDEBUG << "svm reduced num sv: " << df.basis_vectors.size(); DLIB_TEST(mean(svm_reduced_error) > 0.9); svm_cv = cross_validate_trainer(reduced(trainer,30), x,y, 4); dlog << LDEBUG << "svm reduced cv: " << svm_cv; DLIB_TEST_MSG(mean(svm_cv) > 0.9, svm_cv); DLIB_TEST(df.basis_vectors.size() <= 19); dlog << LINFO << " end unittest_binary_classification()"; } // ---------------------------------------------------------------------------------------- template <typename kernel_type> struct kernel_der_obj { typename kernel_type::sample_type x; kernel_type k; double operator()(const typename kernel_type::sample_type& y) const { return k(x,y); } }; template <typename kernel_type> void test_kernel_derivative ( const kernel_type& k, const typename kernel_type::sample_type& x, const typename kernel_type::sample_type& y ) { kernel_der_obj<kernel_type> obj; obj.x = x; obj.k = k; kernel_derivative<kernel_type> der(obj.k); DLIB_TEST(dlib::equal(derivative(obj)(y) , der(obj.x,y), 1e-5)); } void test_kernel_derivative ( ) { typedef matrix<double, 2, 1> sample_type; sigmoid_kernel<sample_type> k1; radial_basis_kernel<sample_type> k2; linear_kernel<sample_type> k3; polynomial_kernel<sample_type> k4(2,3,4); offset_kernel<sigmoid_kernel<sample_type> > k5; offset_kernel<radial_basis_kernel<sample_type> > k6; dlib::rand rnd; sample_type x, y; for (int i = 0; i < 10; ++i) { x = randm(2,1,rnd); y = randm(2,1,rnd); test_kernel_derivative(k1, x, y); test_kernel_derivative(k2, x, y); test_kernel_derivative(k3, x, y); test_kernel_derivative(k4, x, y); test_kernel_derivative(k5, x, y); test_kernel_derivative(k6, x, y); } } // ---------------------------------------------------------------------------------------- void test_svm_trainer2() { typedef matrix<double, 2, 1> sample_type; typedef linear_kernel<sample_type> kernel_type; std::vector<sample_type> samples; std::vector<double> labels; sample_type samp; samp(0) = 1; samp(1) = 1; samples.push_back(samp); labels.push_back(+1); samp(0) = 1; samp(1) = 2; samples.push_back(samp); labels.push_back(-1); svm_c_trainer<kernel_type> trainer; decision_function<kernel_type> df = trainer.train(samples, labels); samp(0) = 1; samp(1) = 1; dlog << LINFO << "test +1 : "<< df(samp); DLIB_TEST(df(samp) > 0); samp(0) = 1; samp(1) = 2; dlog << LINFO << "test -1 : "<< df(samp); DLIB_TEST(df(samp) < 0); svm_nu_trainer<kernel_type> trainer2; df = trainer2.train(samples, labels); samp(0) = 1; samp(1) = 1; dlog << LINFO << "test +1 : "<< df(samp); DLIB_TEST(df(samp) > 0); samp(0) = 1; samp(1) = 2; dlog << LINFO << "test -1 : "<< df(samp); DLIB_TEST(df(samp) < 0); } // ---------------------------------------------------------------------------------------- class svm_tester : public tester { public: svm_tester ( ) : tester ("test_svm", "Runs tests on the svm/kernel algorithm components.") {} void perform_test ( ) { test_kernel_derivative(); unittest_binary_classification(); test_clutering(); test_regression(); test_anomaly_detection(); test_svm_trainer2(); } } a; }